●●● 小特集 核融合炉ブランケット燃料増殖材・冷却材中の材料の共存性

4. 共存性研究の最前線

4.3 純粋なリチウムに恋する候補構造材料の物語

近藤正聡, チザールバレンティン¹⁾, 寺井隆幸²⁾, 鈴木晶大²⁾ 核融合科学研究所, ¹⁾ウクライナ国立科学アカデミー物理機械研究所, ²⁾東京大学 (原稿受付:2010年6月1日)

液体金属リチウムと低放射化フェライト鋼,バナジウム合金およびこれらの絶縁被覆との共存性について,リチウム中の不純物濃度が共存性に与える影響に注目し,腐食メカニズムとその対策までをまとめる.

Keywords:

lithium, solubility, erosion · corrosion, reduced activation ferritic stee1, vanadium alloy

4.3.1 はじめに

液体金属リチウム (Lithium: Li) は,低密度 (0.344 kg/ m³:800 K),低融点 (180℃),高熱伝導特性 (53.7 W/ mK:800 K)をもつアルカリ金属であり,その優れた冷媒 としての特性から,ナトリウムと並び冷却材としての期待 が大きい.核融合炉のブランケットにおいても,自己冷却 型のトリチウム増殖材として期待されている[1].ただし, 候補構造材料との共存性が課題となっている[2].さらに, 磁場下で生じる MHD 圧力損失を抑制するための絶縁被覆 の共存性も同様に重要である.

筆頭著者の個人的な印象であるが,材料と液体の共存性 に関する研究は,私達の恋愛に非常に近いと思っている. リチウムは優れた冷媒で人気があるが,その心を捕まえよ うとする構造材料(低放射化フェライト鋼やバナジウム合 金)の恋路には,乗り越えるべき壁がいくつもある.この 章では,その乗り越えるべき壁,つまり共存性向上に結び つくための課題について,最近の研究成果を交えながらリ チウムの共存性についてまとめる.

4.3.2 純粋なリチウムに恋する候補構造材料

金属リチウム中において候補構造材料は、その構成元素 のリチウム中への溶出を生じる.鋼材表面での構成元素の 濃度と液体金属中の濃度の差により、リチウム中を輸送さ れ、飽和濃度に達すると溶出しなくなると考えられてお り、次の物質輸送の式で表現される[3].

$$J = h_{\mathrm{D},\mathrm{s}}\rho\left(C\mathrm{s} - C\right) \tag{1}$$

ここで J は, その合金元素の単位表面積, 単位時間あた りの溶出量 (g/m²s) で, ρ は溶出元素を含む流体の密度, *Cs* は溶解度で*C* は流体中の濃度である. *h*_{D,s} は, m/s の単 位を持ち, 溶出に関する係数で, 流体力学の無次元数であ

4.3 Effort on Lithium Compatibility Study toward Happy Ending KONDO Masatoshi, TSISAR Valentyn, TERAI Takayuki and SUZUKI Akihiro る Sh 数や Re 数などから求められる物質輸送係数により評価されることも多い[3].(しかし,物質伝達係数に材料表面がその元素を放出する速度を考慮して補正する必要がある.)

このとき,液体金属中にどれだけその元素が溶解する か,それを表す飽和溶解度 Cs (単位は,wt%,at%,wppm, appm が良く使われる)が鍵となる.式(1)から,溶解度が 大きくなればなるほど,トータルで溶出する量も多くな り,更にその速度も大きくなることが予想される.鋼材の 主要な合金元素である Fe と Cr の溶解度をまとめると図1

corresponding author's e-mail: kondo.masatoshi@nifs.ac.jp

408

のようになる[4,5]. Ni は非常に高い溶解度を持つことが 十分に調べられているため,ここではその議論を省く.リ チウム中の窒素濃度が高いほど金属溶解度も高くなること がわかる.このメカニズムも,おおよそ議論されており, リチウムと鋼材の合金元素の反応に窒素が影響しており, それにより溶解反応が促進されることが議論されてきた.

 $2Li_{3}N+Fe \rightarrow Li_{3}FeN_{2}+3Li$ $5Li_{3}N+Cr \rightarrow Li_{3}CrN_{5}+6Li$ (2)

つまり, 化学反応を経て溶解するのであれば, 窒素は もっとも安定なものと反応しようとする傾向があるはず で, Fe と Cr で比較すると, その熱力学的安定性から Cr が選択的に反応することがわかっている. 金属溶解度の データは, 未だに限られており, 今後もその拡充は必要で ある.

このように構造材料と、純度の高い(純粋な)リチウム は、共存性が良くなり、両思いになる可能性がある.つま り、リチウムを、窒素や酸素などの不純物を極力含まない 状態に保持する必要がある.それに対して、構造材料もリ チウムから好かれる性格(Ni等を含まない材料)であるこ とが必要である.この恋愛が成就するには、お互いの努力 が必要であり、どちらか片側だけで片づく問題ではない.

4.3.3 潔癖症の液体金属リチウム

4.3.2で示したように、液体金属リチウム中の純度管理 は、共存性を改善するためには非常に重要な内容である。 液体金属リチウム中の共存性が、酸素や窒素により影響を 受けることは、1960年代にすでに報告されている[7].表 1にリチウム中の金属および非金属不純物元素の測定・制 御方法についてまとめる。不純物制御の基本は、コールド トラップである。これは、溶解度が温度とともに小さくな ることを応用し、不純物を析出させてトラップする方法で ある。

溶存酸素は、ナトリウム[8]や鉛系合金[9]系では、共存 性に大きく影響することがわかっている.リチウム中にお いても同様の影響がある可能性が高い.酸素を測定する技 術が十分に確立できていないことも、研究例が限られてい ることの原因のように思われる.

リチウム中の窒素を測定する技術は、アンモニア抽出法 (リチウム中の窒素をアンモニアとして抽出して測定する 方法)として報告されている[10].さらに、溶存窒素を低

表1 リチウム中の不純物濃度の測定方法と制御方法.

	腐食への 主な影響	測定方法	制御方法
金属不純物	-	ICP-MS	コールドトラップ
酸素	- 金属元素溶出 - (化合物形成) -	-	コールドトラップ ケミカルトラップ(Y)
炭素		-	コールドトラップ ケミカルトラップ(Mo, Nb)
水素		-	ケミカルトラップ(Y)
窒素		アンモニア 抽出法[10]	ケミカルトラップ (V, Ti)

減させる方法については、ホットトラップ法[10]が編み出 されている.図2に窒化物の自由生成エネルギーのグラフ を示す.安定な窒化物を形成して窒素をトラップする材料 として Cr, V, Ti などの金属がトラップ材として検討され てきたが、窒素のトラップ材料内部への拡散性の良さを考 慮して、将来のトラップ材料として Fe-Ti 系が最有力候補 である[11,12].

リチウム中水素濃度の腐食に対する影響は,窒素の影響 に比べて報告例が極端に少ないが,水素濃度が高い場合に 腐食量が多くなることが最近報告されている[13].効果と しては,Fe-Cr-Ni系合金中のCrとCの溶出を促進すること が報告されている.リチウム中水素濃度を測定する方法は 純鉄を用いた水素透過窓[14]が検討されており,また濃度 を下げるためには,金属Yを浸漬させて,吸着させる方法 が検討されている[15].

次にリチウム中の炭素の影響は、特にリチウム中炭素濃 度が低い場合に、鋼材中の炭素が溶出することにあらわれ る.炭素濃度は、炭素と反応した際にリチウムの炭化物 (Li₂C₂)よりも熱力学的に安定な炭化物を形成する金属 (Mo, Nb)などのケミカルトラップを用いて制御すること

図3 金属 Mo, Nb によるリチウム中の炭素の平衡反応とそれに よるトラップ.

が可能である[16]. 図3に, リチウム中の炭化物生成の自 由反応エネルギーを示す.特にNbとの平衡反応により非 常に低い炭素濃度に制御されることがわかる.溶存炭素濃 度が低くなると,鋼材中の炭素がリチウム中に溶出するよ うになり,それにより後述するようにマルテンサイト鋼は 相変態を生じてしまう.

リチウムは潔癖症,というのは言いすぎかもしれない が,うまく付き合うのには純度管理が肝である.純度管理 のためには,その不純物の測定方法が必要であり,その研 究が鋭意進められている.

4.3.4 低放射化フェライト鋼とバナジウム合金 のアピールタイム

a-1. 低放射化フェライト鋼の言い分

液体金属リチウムから見た場合, 現時点では, 低放射化 フェライト鋼とバナジウム合金の二つのパートナー候補が いる. 当然, どちらかに絞る必要はない上に, 照射特性や 高温強度なども同様に重要であるため, 共存性だけの観点 だけからは, どちらとの組み合わせが良いかは決められな い. しかし, それぞれの材料には, 共存性の観点から見た 場合に長所と短所がある.

低放射化フェライトマルテンサイト鋼 JLF-1 (Fe-9Cr-2 W-0.1C)は、600℃ 程度のリチウム中で Cr が前節の式(3) の化学反応を経ながら、溶出する[4].また、溶存窒素濃 度が高場合には、その溶出量が大きくなる.

a-2. リチウム中で変身(相変態)

低放射化フェライト/マルテンサイト鋼 JLF-1 は,炭素 が結晶構造内に侵入しているBCT (Body centered tetragonal)構造を持つ. JLF-1 は鋼材中の炭素が,リチウム中に

図4 (a) リチウム浸漬前のマルテンサイトラス組織と(b) リチウム浸漬による炭素の溶出によりフェライト組織への変態.

溶出するため、せっかくBCT構造を持っていたにも係わら ず、BCC (Body centered cubic)構造になってしまい、材 料表面の強度が低くなってしまう[15]. これが、リチウム 中の JLF-1鋼の変身(相変態: phase transformation)であ る (図4)[17].

a-3. 高窒素濃度のリチウム中の腐食の発展

図5に、0.5 wt%の窒素を含むリチウム(600℃)中にお ける時間経過による腐食の発展の様子を示す.マルテンサ イト組織の様々な境界を選択的に腐食していく様子がわか る.やはり、リチウムにヘソを曲げられると、共存性は急 速に悪化する.

a-4. 流動リチウム中におけるさらなる変身(エロージョ ン・コロージョン)

流動リチウムでは、低放射化フェライト鋼のエロージョ ン・コロージョンが生じることがわかっている.これまで 鉛系合金のような大きな比重を持つ液体金属中では、報告 されてきているが[18]、比重がおよそ1/20のリチウム中 でも生じることが最近明らかになった.そのメカニズムを 図6に示す.まず、合金元素 Cr の溶出が流動加速腐食(流

図6 (a)リチウム攪拌流動場(600℃, 250 hours) 浸漬後の JLF-1 試験片表面 SEM 像 (b)リチウム流動場のエロー ジョン・コロージョンのメカニズム.

図5 窒素濃度の高い静止場リチウム中における時間経過による腐食の発展の様子.

れにより促進された溶出型腐食)により生じ,それと同時 にマルテンサイト組織の各境界が選択的に溶出する.これ は、境界に析出しているカーバイドがリチウムとの反応に より分解され溶出することの寄与が大きいと考えられる. それにより、粒同士の結束が弱くなり、流れによりはがさ れると考えている.

以上より,リチウムと低放射化フェライト鋼の関係が もっとも悪化するときは、高い窒素濃度の高流速場にいる ときであろう.その場合の関係改善には、窒素をトラップ (表1)することが最優先である.

b. バナジウム合金の言い分

次にバナジウム合金だが、化学組成として、Vを主成分 としてTiとCrを持つものを検討する.TiとCrの量は、延 性脆性遷移温度(DBTT:Ductile brittle transition temperature)に関する調査から、合計で5-10 wt%程度が良いこと がわかっている[19].ここでは、主にNIFS-HEAT-2(V-4Cr-4Ti)を取り上げる.まず、主成分のバナジウムの高純 度リチウム中の溶解度は、非常に小さく次の式で与えられ る[5].

$$\ln C \text{ (at. frac)} = 5.69-22050/T \tag{4}$$

Cr の影響は, 明らかにされていない. Ti は, その合金中の 濃度が高くなるとリチウム中の窒素と反応して, 安定な窒 化物を形成することがわかっている.

バナジウム合金では、リチウム中の窒素が材料中に拡散 する.腐食量が大きくなるというよりも、機械的特性への 影響がある[20].これは図7に示すように、リチウム中に 溶存している窒素が、合金中へ拡散して進入し、合金中で 合金元素のTiのと反応して窒化物を形成するためである. これにより、強度は上昇し、合金の延性は低下する.延性 は低下しても、構造材料としての十分な延性は有している [21].低放射化フェライト鋼 JLF-1で見られたようなエ ロージョン・コロージョンに関する報告例は少ないが、今 後詳細な調査が必要である.バナジウム合金も、リチウム の窒素濃度が気になるようだ.

低放射化フェライト鋼 JLF-1 で見られたようなエロー ジョン・コロージョンに関する報告例は少ないが,今後詳 細な調査が必要である.

低放射化フェライト鋼もバナジウム合金も両者ともに, 似た弱点を持っているようだ.

4.3.5 構造材料の羽織る上着(絶縁被覆)

次に,構造材料は理由があって,上着を着ることがある. これは,リチウムのためであるのでなんとも献身的である が,この上着(被覆)は,リチウム中で"へっちゃら"とい うわけではない.上着(被覆)の理由とは以下の通りであ る.液体金属リチウムを流動させて自己冷却型トリチウム 増殖材とする場合には,磁場下のMHD 圧力損失が生じる 課題がある.配管を横切るように流れる電流を遮断するこ とができれば,この現象を抑えることができる.そこで, リチウムが流れる配管の内壁を絶縁物で被覆することが検 討された.

図8 酸化物の自由生成エネルギー.

この絶縁物としては,窒化物や酸化物系のセラミックス が検討された.接液するリチウムとの化学的安定性を熱力 学的に検討した結果(図8),窒化アルミ(AIN,図2)や エルビウム酸化物(Er₂O₃)などの候補が挙げられている.

これらのコーティング方法としては、物理的蒸着法PVD (Plasma vaporized deposition) や 化 学 的 蒸 着 法 CVD (Chemical vapor deposition) や液体金属リチウム中でのそ の場浸漬 (In-situ coating) が検討されている[22].

まず,これらのセラミックスに対してリチウム中の化学 的安定性は,バルク試験片を用いた静止場浸漬試験や自然 対流場試験により調べられた[23].腐食生成物は,Liを巻 き込んだ化合物であることがわかった[24].酸素濃度をリチ ウム中へ鉄酸化物を溶かすことにより増加させると,腐食 量が大きくなることがわかった.被覆内のクラックの発生 による絶縁性の低下や被覆の共存性そのものを改善する為 に,二重被覆が検討されている[25].

被覆することは、絶縁のためであるが、耐食性がよけれ ば耐食膜へと、早変わりとなるかもしれない.その場合、 低放射化フェライト鋼の溶出型腐食や、バナジウムの場合 のマトリックス中への不純物の拡散が抑制できる可能生が ある.

これにより,構造材料はリチウムとの距離を更に縮めら

れるかもしれない.

4.3.6 まとめ

リチウム中の様々な材料の共存性が、現在も鋭意調べら れているが、リチウム中の不純物濃度を制御する技術の開 発が急がれる.リチウム中の溶存不純物濃度の徹底管理に より、共存性は今よりもさらに向上するはずである.さら に溶解度などの足りないデータは積極的に補充し、腐食試 験の結果を、モデルをたてて解析することが必要である. そして腐食の予測へとつなげられれば、大変な思いをして する長時間試験の重みが更につく.被覆は、自己修復や2 重被覆などの革新技術により、より長寿命化をめざす.

これらの努力により、リチウムと構造材料の恋の物語も Happy end になるようだ.

参考文献

- [1] R.F. Mattas, D.L. Smith, C.B. Reed, J.H. Park, I.R. Kirillov, Y.S. Strebkov *et al.*, Fusion Eng. Des. **39-40**, 659 (1998).
- [2] S. Malang, P. Leroy, G.P. Casini, R.F. Mattas and Y. Strebkov, Fusion Eng. Des. 16, 95 (1991).
- [3] P.F. Tortorelli, J. Nucl. Mater. 191-194, 965 (1992).
- [4] R.J. Pulham and P. Hubberstey, J. Nucl. Mater. 115, 239 (1983).
- [5] I.E. Lyublinski, V.A. Evtikhin, V. Yu. Pankratov and V.P. Krasin, J. Nucl. Mater. **224**, 288 (1995).
- [6] M. Kondo, T. Muroga, T. Nagasaka, Qi Xu, V. Tsisar and T. Oshima, *ICFRM-14*, Hokkaido, Japan (2009).
- [7] E.E. Hoffman, ORNL-2924, Oak Ridge National Laboratory (1960).
- [8] E.E. Hoffman, W.D. Manly, *Proc. symp. Handling and Uses of Alkali metals*, 19, 82, American chemical society (1957).

- [9]近藤正聡:博士論文,東京工業大学原子核工学専攻 (2006).
- [10] R.J. Schlager, D.L. Olson and W.L. Bradley, Nucl. Technol. 27, 439 (1975).
- [11] T. Sakurai, T. Yoneoka, S. Tanaka, A. Suzuki and T. Muroga, Fusion Eng. Des. 61-62, 763 (2002).
- [12] S. Hirakane, T. Yoneoka and S. Tanaka, Fusion Eng. Des. 81, 665 (2006).
- [13] A. V. Shulga, J. Nucl. Mater. 373, 44 (2008).
- [14] J. Yagi, A. Suzuki, T. Terai, T. Muroga and S. Tanaka, Fusion Eng. Des. 84, 1993 (2009).
- [15] Y. Edao, S. Fukada, S. Yamaguchi, Y. Wu and H. Nakamura, Fusion Eng. Des. 85, 53(2010).
- [16] Q. Xu, M. Kondo, T. Nagasaka, T. Muroga and O. Yeliseyeva, J. Nucl. Mater. 394, 20 (2009).
- [17] Q. Xu, Doctorate thesis, Department of Fusion Science, The Graduate University for Advanced Studies (2008).
- [18] M. Kondo, M. Takahashi, T. Suzuki, K. Ishikawa, K. Hata, S. Qiu and H. Sekimoto, J. Nucl. Mater. 343, 349 (2005).
- [19] B.A. Loomis and D.L. Smith, J. Nucl. Mater. 191-194, 84 (1992).
- [20] T. Nagasaka, T. Muroga, M. Li, D.T. Hoelzer, S.J. Zinkle, M.L. Grossbeck and H. Matui, Fusion Eng. Des. 81, 307 (2006).
- [21] M. Li, D.T. Hoelzer and M.L. Grossbeck, J. Nucl. Mater. 392, 364-370 (2009).
- [22] T. Muroga and B.A. Pint, J. Nucl. Mater. in press (2010).
- [23] M. Nagura, M. Kondo, A. Suzuki, T. Muroga and T. Terai, Fusion Sci. Technol. 52, 630 (2007).
- [24] M. Nagura, A. Suzuki, T. Muroga and T. Terai, Fusion Eng. Des. 84, 1384 (2009).
- [25] B.A. Pint, J.L. Moser, A. Jankowski and J. Hayes, J. Nucl. Mater. 367-370, 1165 (2007).