Special Contributed Article
Recollections on the Progress in Fusion Research over the Past Fifty Years
.. IYOSHI Atsuo, MUTOH Takashi and YOKOYAMA Masayuki 487

Commentary
Frontiers of Plasma Technology for High-Efficiency Silicon Based Solar Cells and Their Mass Production
KONDO Michio, FUJIWARA Hiroyuki and SAITO Tadashi 499

Special Topic Article
Advances in Plasma Research at Ultra-Low Temperature
1. Introduction .. ISHIHARA Osamu 509
2. Complex Plasmas in Cryogenic Environment ISHIHARA Osamu 511
3. Laser Cooled Plasma in RF Trap ARAMAKI Mitsutoshi, KAMEYAMA Satoshi and KONO Akihiro 520
4. Characteristics and Self-Organization of Plasmas at Cryogenic Temperatures .. NOMA Yuri, CHOI Jai Hyuk, SANO Masaki and TERASHIMA Kazuo 526
5. Synthesis of Nanomaterials Using Plasma Reaction in Cold Liquid ... SANO Noriaki 532

Special Topic Article
Heat Removal Technologies in Fusion Reactor — from Actual Uses to Advanced Technologies —
1. Introduction .. TODA Saburo and EBARA Shinji 539
2. The Foundation of Thermal and Fluid Engineering in Nuclear Fusion Reactors
 2.1 Cooling of Plasma Facing Components EZATO Koichiro 540
 2.2 Heat Transfer Fluids in Fusion Blankets SEKI Yohji, EZATO Koichiro and ENOEDA Mikio 543
3. Actual Thermofluid Engineering in Fusion Devices
 3.1 Cooling of Plasma-Facing Components of ITER, JT-60SA EZATO Koichiro 548
 3.2 Thermofluids in Test Blanket Modules of ITER SEKI Yohji and ENOEDA Mikio 551
4. Front Line of Fusion-Related Thermofluid Researches
 4.1 MHD Turbulent and Buoyant Flow in Fusion Blankets SNOMENTSEV Sergey 556
 4.2 Extremely High Heat Flux Removal Technique Using Metal Porous Media YUKI Kazuhi 558
 4.3 Thermofluid Engineering in Conceptual Design of Helical Reactor
 — Heat Transfer in Self-Cooled Fiber Blanket SAGARA Aki and HASHIZUME Hidetoshi 561
 4.4 Temperature Control of IFMIF High Flux Test Module EBARA Shinji 564
5. Conclusion .. TODA Saburo and EBARA Shinji 567

PFR Abstracts .. 569
Information .. 571
Plasma & Fusion Calendar .. 572
Announcement ... 575

Cover
Dust particles collected in LHD by a vacuum-filtered collection method. Dust particles are classified into three kinds: (a) and (b) show small spherical dust particles below 1 μm in size, (c) shows an agglomerate consisting of primary particles of 10 nm, and (d) shows a large dust particle above 1 μm in size and irregular in shape; this suggests three formation mechanisms of dust particles: chemical vapor deposition growth, agglomeration, and peeling from walls. (Kazunori KOGA et al., Plasma and Fusion Research Vol.4, 034 (2009) http://www.jspfor.jp/PFR/)