●●● 小特集 核融合プラズマにおける電子サイクロトロン加熱.電流駆動の進展

3. ECH・ECCD 実験の進展

3.2 トカマク, ST 装置における ECH・ECCD の進展

諌山明彦,田中 仁¹⁾
日本原子力研究開発機構,¹⁾京都大学エネルギー科学研究科
(原稿受付:2009年5月12日)

本章では、トカマクおよび球状トカマク(ST)装置における最近の ECH・ECCD の進展について記述してい る.トカマクにおける結果としては、ITER 等においても重要になると考えられるトピックスとして、新古典テア リングモードや鋸歯状振動の不安定性の制御、電流分布・内部輸送障壁・回転分布への影響、プラズマ着火・立 ち上げ・放電洗浄を紹介する.また ST 装置における結果として、中心ソレノイドコイルを用いない ECH・ECCD による ST の起動や、最近注目されているトカマク/ST における電子バーンシュタイン波加熱・電流駆動の結果 を紹介する.

Keywords:

ECH, ECCD, neoclassical tearing mode, sawtooth oscillation, internal transport barrier, real-time control, discharge cleaning, electron bernstein Heating/ Current Drive, non-inductive current start-up, Tokamak, spherical tokamak

3.2.1 はじめに

トカマクやSTにおいて、電子サイクロトロン加熱 (ECH)×電流駆動(ECCD)は、プラズマの着火・電流立 ち上げ、電流分布制御、加熱分布制御、不安定性制御など 殆どすべてのフェーズで用いられてきて、それぞれにおい て重要な結果が得られてきた。本章では、最近のECH・ ECCDに関する実験結果を紹介するとともに、ITERや JT-60SAにおけるECH・ECCDの展望や課題、遮断密度以 上の加熱法として注目されている電子バーンシュタイン波 (EBW)加熱・電流駆動について述べる。

トカマクにおいては、加熱・電流駆動の物理の研究のほ か、制御ツールとして使うための研究も進んでおり、最近 はその比重が増しているように思われる.国際トカマク物 理活動(ITPA)においてもECH・ECCDによる制御の結 果が多く報告されている.この要因として、EC波の入射パ ワーやパルス幅が年々増加していることに加え、レイトレ イシングコードやフォッカー・プランクコードによりEC 波の伝搬や吸収が精度よく計算できることから、実験デー タとの比較や制御システム開発のための予測計算が行いや すいということが挙げられる.また、最近のジャイロトロ ン発振技術の進展により MW オーダのパワーで数秒間の 入射が可能となった結果、中~大型のトカマクでもエネル ギー閉じ込め時間や電流拡散時間と同程度またはそれより 長い時間スケールでの現象の研究が可能となった.これに より、「ECH・ECCDによる圧力・電流分布の最適化や不

安定性の制御ののちにそのプラズマが定常的に維持できる か」といったことも議論できるようになった. 中~大型ト カマクではさらに中性粒子ビーム等と ECH・ECCD を組 み合わせることにより圧力の高い(高ベータ)プラズマに おける研究を行うことが可能となった.その結果,「EC 波単独では研究が困難であるが ITER 等に向けては重要で ある研究」が可能となる.これに関係する研究としては, 新古典テアリングモード (NTM)の安定化やECH・ECCD に対する内部輸送障壁(ITB)の応答に関する研究などが ある.これにより, ITER 等における重要な課題の1つで ある「高ベータプラズマの定常化研究」における ECH・ ECCD の効果を明確にすることができる. 高圧力プラズマ では圧力分布と電流分布が影響を及ぼし合いながら発展す るが, ITER や DEMO 炉においてはこのような「自律 性」が高くなり、外部から制御するためのノブが少なくな る. 吸収位置が任意に変えられ、かつ加熱・電流駆動密度 の高い電子サイクロトロン波は非常に強力なツールとして 重要な位置を占めると考えられる.STではプラズマ周波 数がサイクロトロン周波数よりもはるかに高い領域で運転 を行うので、従来トカマクで行われてきた電磁波モードで の ECH・ECCD は機能しない. そこで, 早くから密度限界 のない EBW による加熱・電流駆動が注目されてきた。第 2.1章で述べたように静電波モードであるEBWを励起する ためには高域混成共鳴 (UHR) 層で電磁波モードからモー ド変換を行う必要があり、また、ドップラーシフトした EC

3. Progress of the ECH • ECCD Experiments

3.2 Recent Progress of the ECH • ECCD Experiments in Tokamaks and Spherical Tokamaks

ISAYAMA Akihiko and TANAKA Hitoshi

 $authors'\ e-mail:\ is ayama.akihiko@jaea.go.jp,\ h-tanaka@energy.kyoto-u.ac.jp$

共鳴での吸収が強く起こることから,加熱・制御での利用 の面からは多くの実験的検証が必要となる.これらの実験 はここ数年急速に進展してきている.また,プラズマの着 火,電流の立ち上げという観点からのECH・ECCDの利用 は中心ソレノイドコイルを持たないST実現のために有効 であると期待され,小型装置のみならず中型装置でも実験 が行われつつある.

トカマク/STにおけるECH・ECCDの実験に関しては, 過去にいくつかレビューがあり[1-5],本学会誌にも小特 集[6]があった.本章では,重複を避けるためにそこから進 展のあった項目や,触れられていなかった項目について述 べる.取り上げるのは最近のものに限定したがそれでも多 くの結果があり,個々の結果の詳細については十分触れる ことができなかったので,引用文献を参考にしていただき たい.なお,ITERに関連する事項に関しては,ITERPhysics Basis[7,8]に多くの結果が掲載されているので,こちら も適宜参考にしていただきたい.また,プラズマの高ベー タ化・定常化はITERやJT-60SA等のトカマクにおける最 重要課題の1つであるが本稿の主旨とは若干逸脱するの で,本学会誌の小特集記事[9,10]等を参考にしていただき たい.

3.2.2 ECH・ECCD による MHD 不安定性制御 3.2.2.1 新古典テアリングモードの制御

ECCD を制御ツールとして用いる場合に最も重要視され ている項目の1つとして新古典テアリングモード (NTM) の制御が挙げられる.NTMは、磁気シアが正の領域で種 磁気島が現れると自発電流の減少と磁気島の成長が正の フィードバックとして働くことで成長する. 逆に, 磁気シ アが負であると自発電流の減少は磁気島を成長させる方向 には働かない.NTM が現れると閉じ込め性能が劣化する ことから、NTM の発生を回避したり能動的に安定化する ことが必要になる。制御の対象となる NTM のモード数と しては,閉じ込め性能への影響が大きい m/n = 2/1 および 3/2が挙げられる (m はポロイダルモード数, n はトロイダ ルモード数). NTM およびその制御に関しては解説論文 がいくつかあるのでそちらも参照していただきたい[11-13]. ECCD による NTM の 制 御 実 験 は, JT-60U, DIII-D, ASDEX-Uで行われていて前回の小特集記事でも紹介が あったが[6],その後も新しい結果が報告されているので ここではそれらを取り上げる.

ECCD による NTM を安定化する場合は, ECCD 位置を NTM 発生位置に正確に合わせる必要がある.このための 制御としては EC ミラーを実時間で駆動する方式 (JT-60U [14]) やトロイダル磁場またはプラズマ大半径を変化させ て ECCD 位置を合わせる方式 (DIII-D[15]) などが開発さ れている.安定化効果を得るための ECCD 位置の精度とし ては磁気島幅の半分程度以内が目安である(磁気島幅と ECCD 幅が同程度の場合).JT-60U の例でいえばおおよそ 5 cm くらい (プラズマ小半径の5% くらい)である.逆に 磁気島幅程度ずれて入射した場合は NTM の強度が増大す ることが JT-60U で観測されている[16].m/n = 2/1 モード の場合,NTM が成長するとモードロックやディスラプ ションにつながることから,この点からもずれの量は小さ く抑えることが重要である.

NTMを安定化する際, ECCDはNTMが成長してから行 う場合が多いが,発生前に ECCD を行っておいた方が安定 化(発生の抑制)に要するパワーが少なくてよいという結 果が JT-60U で得られている[17,18](「早期入射」).ま た,早期入射の場合も飽和後の ECCD と同程度の入射位置 の精度が必要であるとの結果が得られた.DIII-D でもその 後同様の結果が得られ[19],さらに,モーショナルシュタ ルク効果(MSE)計測装置を用いた実時間平衡計算により NTM 発生位置を同定して ECCD を行うことにより NTM の発生を抑制し,自由境界理想 MHD 限界('no-walllimit') まで到達することに成功した(図1).早期入射は ITER 等においても有効であると考えられ, ECCD を継続して行 う以外にも,ある高ベータプラズマを得るために NTM が 不安定になるパスを経由せざるを得ないときに一時的に入 射して回避するというシナリオも考えられる.

NTM を安定化する場合, EC 波のパワーを on/off 変調し て磁気島のO点のみに ECCD を行うことが有効であると考 えられている(第2.2.2章参照).ITER においても EC 装置 に変調の機能を持たせることが考えられているが,変調の 機能を付加することはジャイロトロンや電源にとっては条 件が厳しくなることから,変調 ECCD が NTM 安定化にど

 図1 早期EC波入射により m/n=2/1のNTMの発生を抑制して自 由境界理想 MHD 限界に到達した例(DIII-D)[20].(a)電 子密度および Da 線強度,(b)NB パワーおよび EC 波パ ワー,(c)中心安全係数(q(0))および安全係数最小値 (q_{min}),(d)n=1および n=2の磁場揺動強度,(e)規格化 ベータ値(β_N),内部インダクタンス(h).β_N=4 h は自由 境界理想 MHD 限界の目安に対応する.

Special Topic Article

の程度有効であるかを実験的に明らかにすることが重要で ある.変調 ECCD による NTM は ASDEX-U において *m/n* = 3/2のNTMに対して行われ[21], 無変調 ECCD に 比べ安定化効果が大きいことが示された[22]. JT-60Uに おいても2008年に5kHz以上での変調が可能となり [23, 24], *m*/*n* = 2/1 の NTM に対して変調 ECCD を行った [25]. ASDEX-Uとは異なり, JT-60Uでは有理面の位置は 時間的に動かないので ECCD 位置を固定することがで き、安定化効果をより詳細に調べることができる. ECCD 後の磁場揺動強度の減衰時間を比較すると、0点近傍への 変調ECCDの場合の減衰時間は無変調ECCDの場合の減衰 時間の1/3程度であり,変調 ECCD の方が安定化効果が大 きいことが明らかになった.また、変調の位相をスキャン することにより, 安定化効果の位相差依存性を調べた. そ のときの磁場揺動の波形を図2に示す.0度の場合(0点 ECCD に近い) は安定化効果, 90度の場合は効果なし, 180 度の場合 (X 点 ECCD に近い) は不安定化効果が観測され, 変調ECCDを行う際には位相を最適化することが重要であ ることが明らかになった. さらに、上の0度付近で位相の スキャンを行った結果、磁場揺動の減衰時間の劣化を50 %以下にするためには位相の誤差を±50度程度以下にする 必要があることが実験的に示された. 上記の位相差依存性 は、ECCD 効率に関するモデル計算[26-28]とおおむねー 致した.このほか、変調 ECCD に関しては EC 駆動電流に 関して注意すべき点がある. 例えばデューティー比 (変調 周期に対する on の時間) が 50%, 変調周波数が 5 kHz の場 合, 100 µs ごとに EC 波を on/off するが, 実際にプラズマ 内に流れる電流波形としては矩形波ではなく、かつ遅れが 生じる可能性がある.この遅れは上記の位相差やデュー ティー比のずれにつながる. モデル計算の報告例はあるも のの[28],遅れを定量的に評価した実験例はまだなく、今 後の研究が待たれる.

ITER においても上記のようなシナリオに基づいて NTM を安定化することができると考えられ,修正 Rutherford 式に基づいたシミュレーション解析が行われているが

[29-31], ITER における NTM 安定化に関しては、既存の 装置とプラズマパラメータが異なることにより現れる課題 がある.NTM はある磁気島幅まで小さくなると自発的に 縮小することが理論で予想されていて、実験的にも観測さ れている. したがって, NTM をこの幅('marginal island width', W_{marg}) まで縮小させると NTM を完全に安定化す ることができる.しかし、ECCDにより磁気島幅が小さく なると磁気島幅に対する ECCD 幅が相対的に広くなり,磁 気島内部に流れる電流量が減る結果,NTM 安定化効果が 弱くなる可能性がある.そのため、磁気島幅が Wmarg にな るまで安定化効果が維持できるかが鍵となることから, ITER における Wmarg を予測する研究も行われている. ASDEX-U, DIII-D, JT-60Uの実験結果を統合することに より, m/n = 3/2のNTMの W_{marg} はイオンバナナ幅の2倍 程度という結果が得られた[30]. このスケーリングに従う と ITER の W_{marg} は約2 cm であり,装置サイズに比べると かなり小さい.このことから、効果的に(すなわち少ない パワーで)NTM を安定化するためには、アンテナや入射 角度などの最適化によりECCD幅が狭くなるようにするこ とが重要である.

3.2.2.2 鋸歯状振動の制御

ECCD による鋸歯状振動の安定化や不安定化に関して は、これまで多くの装置で観測されてきた.国内の装置に おいても、WT-3[32]やJT-60U[33,34]から安定化や不安 定化に関する結果が過去に報告された.おおまかにいう と、鋸歯状振動の反転半径近傍への co 方向(プラズマ電流 と同方向)の ECCD や反転半径内側への counter 方向(プ ラズマ電流と逆方向)の ECCD により鋸歯状振動周期が短 くなり、反転半径近傍への counter-ECCD や反転半径内側 への co-ECCD により鋸歯状振動周期が短 くなり、反転半径近傍への counter-ECCD や反転半径内側 への co-ECCD により鋸歯状振動周期が長くなる.EC 駆動 電流量が十分大きく中心安全係数q(0)が1より大きくで きる場合は鋸歯状振動を消滅させることができ、WT-3か らそのような例が報告されている[32].最近では、 ASDEX-U[35,36]やT-10[37]から鋸歯状振動周期の変化 に関する報告があった.**図3**に ASDEX-U の結果を示す

図2 磁場揺動と変調 ECCD との位相差を変えたときの磁場揺動の違い(JT-60U)[25].位相差が(a)0度,(b)90度,(c)180度の場合.

図 3 ECCD 幅が(a)狭い場合(d/a = 0.02),および(b)広い場合 (d/a = 0.05)における鋸歯状振動周期の ECCD 位置依存性 (ASDEX-U)[36].

[36]. ASDEX-Uでは, ECCD 分布幅の違いにより鋸歯状 振動周期の ECCD 位置依存性が変わることを観測してい る. ECCD 分布幅が狭い場合 (図3(a), d/a = 0.02), 反転 半径 $\rho_{inv}($ または q = 1面 $\rho_{q=1}^{MSE})$ のやや外側での co-ECCD のときに安定化, counter-ECCD のときに不安定化が観測 されている (d は ECCD 分布の 1/e 半径, a はプラズマ小半 径). ECCD 幅が広い場合 (図3(b), d/a = 0.05), 安定化 効果は同様に見られているが、counter-ECCD の場合も周 期が伸びている.この原因として,ECCD幅が広いために counter-ECCDによる不安定化効果よりもECHによる安定 化効果が顕在化したことを挙げている. q=1 面近傍への ECCD の場合, ECCD 位置と安定化効果については装置に より若干差が見られる. q=1 面の位置に加え q=1 面での シアも鋸歯状振動崩壊に関係するパラメータとされている が[38], q = 1 面近傍の平坦なq 分布の領域で正確な測定が 難しいことが原因の1つであると考えられる.

図3の性質を利用し、ECH・ECCDの位置を反転半径 (またはq = 1 面)近傍で実時間で変えることにより鋸歯状 振動の周期を制御する実験がTCV[39]やTore Supra [40,41]で行われた.図4にTore Supraの例を示す.帰還 制御開始時(t = 4.5 s)では鋸歯状振動周期の実績値が指令 値よりも大きいが、実時間で入射角度を変えて最適化する ことにより鋸歯状振動周期は短くなり $t \sim 5.3$ s で指令値に 近い値が維持できている.その後t = 5.5 s で指令値を上げ るとそれに伴い入射角も変化しt = 6.9 s で指令値に近い値 が維持できている.

高ベータプラズマにおいては、鋸歯状振動の制御はそれ 自体より NTM への影響と合わせて考える必要がある。 DIII-Dや JETでは鋸歯状振動崩壊の直後にNTM が発生す ることが観測されていて、これは鋸歯状振動崩壊により有

図4 ECCD 位置の制御による鋸歯状振動周期の実時間制御の例 (Tore Supra)[40].

理面に種磁気島が形成されたためと考えられる. 上記の鋸 歯状振動周期の制御においては、図3のように ECCD 位置 と鋸歯状振動周期との間に相関関係があることを利用して いた.しかし、NTM の発生の回避のために鋸歯状振動を 制御する場合は,振幅を制御する必要がある.鋸歯状振動 の場合,必ずしも「周期を短くする=振幅を小さくする」 とはならないので,振幅の実時間制御を実証することが重 要である.また、反転半径(または q = 1 面)と NTM 発生 位置との距離によっても NTM への影響が異なると予想さ れるので、この点に関する研究の進展も望まれる. このほ か, m/n = 3/2のNTMが発生した後に中心co-ECCDを行っ たところ,NTMの成長が抑制される現象がJT-60Uで観測 された[16]. ECCD を行わない場合に比べ磁場揺動強度 は約1/5であった. co-ECCDを行った場合は反転半径と NTM 発生位置が近くなっていて, ECCD が鋸歯状振動ま たは電流分布に影響を与えた可能性が考えられる.

3.2.3 ECH・ECCD による分布への影響および 最適化

3.2.3.1 電流分布の最適化

ITERやJT-60SAでは、EC駆動電流は駆動電流量として は NB 駆動電流や自発電流よりも小さいが、局在化した分 布が得られることから電流分布の微調整('tailoring')に使 うことができる. そのため, 自律性の高いプラズマを得る ために ECCD を使うことにより,能動的に定常電流分布に 近づけさせることができる. Off-axis ECCD による高性能 負磁気シアプラズマの維持に関する実験はDIII-Dにおいて 活発に行われている[42-45]. 例を図5に示す[42]. この放 電では ρ~0.4 に ECCD を行うことにより (EC 駆動電流は プラズマ電流の10%程度),安全係数最小値 q_{min}~2, $q(0) \sim 5$ の負磁気シアプラズマを維持している.ベータ値 や閉じ込め性能も高く(β_N~2.8, β_t~2.9%, Ηファクタ H₈₉~2.3),非誘導電流駆動割合は85%に達している.同 様の放電で ECCD の代わりに ECH とした場合はq(0) が減 少していることから (図5(d)), off-axis ECCD が負磁気シ アの維持に実際に有効であったことを示している.また,

 図5 準定常高性能負磁気シア放電の例 (DIII-D)[42]. (a)プラズマ電流, NBパワー, EC 波パワー, (b)線平均電子密度, D_α線強度, (c)内部インダクタンス,規格化ベータ値, (d)中心安全係数,安全係数最小値, (e)イオン温度, (f) 電子温度, (g)電流密度分布. (a)-(f)には ECCD を ECH に置き換えた放電波形(細線)も重ねて描いている.

中心のイオン温度や電子温度も ECCD の場合の方が高 い.図5(g)には、全電流 (J_{tot}), EC 駆動電流(J_{EC}), 自発 電流(J_{boot}), NB 駆動電流 (J_{NB}), オーミック電流(J_{OH})の 分布を示している(' J_{OH} (Experiment)'以外は計算値). ECCD 前の全電流分布 (t = 1.48 s) に比べ ECCD 後は $\rho \sim 0.4$ にピークをもつ分布となっている. MSE から評価 した電流分布は $\rho \sim 0.4$ でピークしていて、フォッカー・プ ランクコード計算での ECCD 位置と一致している. この分 布において自発電流や NB 駆動電流では十分に流せない $\rho \sim 0.4$ での電流を ECCD により補うことができているこ とがわかる.

上記の結果では EC 波パワーは矩形波状に入力されてい たが、EC 波パワーを実時間で制御する実験も行われてい る.DIII-Dでは、主加熱前に最適な安全係数分布を得るた め EC 波パワーを帰還制御して電流分布を制御することに も成功している[46].例として図6に示した放電では, MSE 計測による内部磁場測定を反映した平衡を実時間で 計算し,q(0)を算出している.図中1,2の放電では q(0)の減少(電流の浸み込み)を遅らせるような指令値と していて、この指令値に従うように EC 波パワーが帰還制 御されている. 2の場合, t=1.15 s 以降はパワー不足のた めq(0)の実績値が指令値よりも小さくなってしまってい るが、制御システムとしては正常に働いている. DIII-D ではこのほかにもジャイロトロンパワーの帰還制御により 電子温度を三角波状に上昇・下降させた例も報告されてい る[47]. 最後の例はデモンストレーションに近いが、ジャ イロトロン出力が柔軟に変えられることを示した例として

図6 EC 波パワーの実時間制御により中心安全係数を制御した
例 (DIII-D)[46]. (a)EC 波パワー, (b)中心安全係数の指
令値 ('Target value') および実績値 ('1'および'2').

図7 EC 波パワーを階段状に変化させたときの(a)イオン温度お よび(b)電子温度の分布 (JT-60U)[48].実験では、0 MW (○)→0.78 MW(□)→1.55 MW(◇)→2.17 MW(△)→ 1.55 MW(+)と変化させている.

興味深い.

3.2.3.2 内部輸送障壁への影響

高 β_p モードなど ITB を伴った弱磁気シアプラズマにお いてEC波をITBの近傍または内側に入射することにより, ITB領域のイオン温度勾配や電子密度勾配が緩くなったり 不純物が排出されたりすることが観測されていて,前回の 小特集記事においても紹介された[6]. その後, JT-60Uに おいてイオン温度のITB (Ti ITB) に関して, EC 波パワー やプラズマ電流の依存性が調べられた[48]. 図7に EC 波 パワーを階段状に上昇・下降させたときの温度分布を示 す. EC 波パワーの増加とともに Ti ITB が劣化し, 2.17 MWの場合はT; ITBが不明瞭になっている. EC 波パワー を減少するとT_i ITB が再度成長し, 1.55 MW では EC 波パ ワー上昇時と同程度になっている. EC 波パワーは大きく 変わっているものの電子温度の変化は小さい、図の結果は トロイダル角度が20度の場合であるが、トロイダル角度を 0 度として ECH とした場合も ITB の劣化が観測されたの で, ECH が ITB に影響を与えていると報告している.ま た, Ipが大きいほどTi ITBの劣化が小さいことも観測され た.この原因として電流または電流分布(磁気シア)の違 いが挙げられたが、ITB領域の磁気シアは Ipを変えた場合 も大きくは変わらなかったので、Ipの強度そのものが ITB 劣化に関連している可能性があると結論づけている.この ほか、電子温度分布の硬直性(stiffness)が強い場合は ECH 時に電子熱輸送の増大とともにイオン熱輸送も増大 し、T_i ITB が劣化するが、硬直性が弱い場合は ECH 時に T_i ITB に変化がないまたは成長するという結果も報告さ れた[49]. EC 波入射時の ITB の劣化は DIII-D の QDB (Quiescent Double Barrier) モード[50]の ITB でも観測さ れている[51]. ITBの内側への ECH とともに、中心部の イオン温度が低下し, EC 波入射を停止すると再び増加す ることが報告されている. ITB 劣化の原因としてはイオン 温度勾配(ITG)モードとの関連で T_e/T_iが ECH の on/off により変化することを挙げている. ECHがITBを劣化/成 長させるメカニズムの解明はまだ発展途上であり、上記の ような ITB の特性を反映した制御はまだ行われていな い. 自律性の高いプラズマにおいて ECH・ECCD が ITB の制御に使えると強力なツールになることから、今後の研 究の進展が期待される.

3.2.3.3 回転分布への影響

EC波やイオンサイクロトロン (IC) 波のようにトルク入 力のない場合にもプラズマ回転を誘起することが実験的に 観測されている.プラズマ回転は抵抗性壁モード (RWM) の安定化にも効果的であり、外部からのトルク入力の小さ い ITER 等でプラズマがどのような回転分布を持つかを予 測することは重要な研究課題であることから, NB 加熱の プラズマを含めて、プラズマの自発回転 (intrinsic rotation またはspontaneous rotation) に関する研究は最近注目され ている. IC 波加熱プラズマに関しては, ΔV_t は $\Delta W/I_p$ にほ ぼ比例するという実験結果が Alcator C-mod で得られた [52]. ここで, V_t, W, I_p はそれぞれトロイダル回転速度, 蓄積エネルギー,プラズマ電流であり,△はその増分であ ること意味する. EC 波入射の場合のトロイダル回転に関 する結果としてはDIII-D[53,54], JT-60U[48,55,56], TCV[57-59]などから報告されている. EC 波は IC 波に比 べると吸収領域が狭いので, 巨視的パラメータだけでなく 分布の変化を見ることがメカニズムを解明する上で重要で あろう. DIII-Dにおける例を図8に示す [54]. 図の放電で は ECH 入射条件を変えたときのトロイダル回転角速度分 $布 \omega_{a}$ を示している. ECH前 (図中"L") に対し, ECH 後(図中"core", "spread") は周辺部 (ρ~0.8) で co 方向 に回り、中心部が counter 方向に少し回っている. ECH 位置を周辺部(図中"off")に変えると中心部が co 方向に 回っている.また, $\rho \sim 0.8$ での回転速度は W/I_p に比例する とも報告している. ECH・ECCD の吸収位置の違いにより 回転速度分布が変化することは JT-60U においても観測さ れていて,吸収位置より内側では co 方向,外側では counter 方向へ変化している [56]. Co 回転と counter 回転 の反転位置は吸収位置にほぼ一致し、吸収位置を変えると この反転位置が移動することも観測された(図9).なお, 図9の実験においてはトロイダル入射角度が20度であり、 ECH とともに ECCD も行われている. 自発回転は, NB

図8 (a)-(c)さまざまな加熱/電流駆動の条件の下でのトロイ ダル回転分布,(d)EC 波パワーの吸収分布 (DIII-D)[54]. 短パルスの NB を入射して荷電交換分光装置で分布を測定 している.

図9 EC 波入射後のトロイダル回転速度の変化量の分布(JT-60U).
吸収位置付近で変化量の符号が反転している[56].

プラズマにおいては古くは JFT-2M からの報告があり [60], 近年も JT-60U, JET など多くの装置で研究が行われ ていて,多装置間での比較[61]も行われている.理論面で は新古典理論や乱流からのアプローチが提示されていて, 実験との比較や加熱手段によらない描像の構築が待たれ る.

3.2.4 ECH・ECCD による放電制御

3.2.4.1 トカマクにおけるプラズマ着火・電流立ち上 げ・壁洗浄

[プラズマ着火]

EC 波によりプラズマ着火時に必要な一周電圧が低減で きることは以前から小型装置等でも示されていて多くの報 告例がある[1]. ITER や JT-60SA のような超伝導装置に おいてはポロイダルコイル電流値を短時間に大きく変化さ Special Topic Article

せることができないことから、EC 波を用いて着火時の一 周電圧を下げるシナリオが検討されている[62,63].例え ば ITER では 0.3 V/m のトロイダル電場を想定してい る.入射モードとしては、ITERでは基本波、JT-60SA では第2高調波を想定している.こういった背景もあり, EC 波によるプラズマ着火の研究が最近また注目されだし ているようである. 国際トカマク物理活動 (ITPA) におい ても20度のトロイダル入射角のもとでの着火特性に関する 国際共同実験が2008年に採択された.最近の実験結果とし *τ*, JT-60U[64,65], DIII-D[66,67], Tore Supra[68], KSTAR[69]から報告があり、多くの装置で基本波または 第2高調波 EC により 0.3 V/m 以下での立ち上げに成功し ている. EC 波の入射角度を変えた場合の着火特性に関す る JT-60U の結果を図10に示す[64]. Ray 3 の場合は他の場 合よりも立ち上がりが早くなっている.また,共鳴面を図 のR=2.4mにしたときは電流の立ち上がりが遅かった.こ れらのことは、ガス圧やEC 波パワーのほかEC 波の入射角 度や共鳴面の位置にも留意する必要があることを示してい る. プラズマの着火には磁場のヌル点が関係していると指 摘されていることから, ヌル点の有無を含め磁場構造と着 火特性との関係に関する研究が多くの装置で進められてい る.

[電流立ち上げ]

プラズマ着火に加え、プラズマ立ち上げのシナリオを確 立することも ITER 等では重要な課題である. ECH・ ECCD に加え低域混成 (LH) 波や NB を用いた非誘導電流 により、中心ソレノイドコイルを使うことなくプラズマ電 流を立ち上げた最近の実験例としては TRIAM-1M[70,71] や JT-60U[65,72]からのものがある. JT-60U では、EC 波と NB を用いてプラズマ電流を 215 kA から 310 kA まで 増加させることができたが、電流上昇の効率は LH 波を用 いた場合よりもかなり低いと報告している[65]. ITER の シミュレーション解析の結果も ITPA 会合等で多く報告さ れている. ECH・ECCD を使った例として、ITER の電流 立ち上げ時に EC 波を入射した場合の磁束の消費に関する

図10 (a) EC 波の軌跡,共鳴面 (*R*~3.0 m),および誤差磁場の分 布,(b) プラズマ電流,(c) 一周電圧,(d)電流上昇率, (e)線積分電子密度,(f) *H*_a線強度,(g) EC 波パワー (JT-60U) [64].

TSC シミュレーションの結果が最近報告された[73]. こ のシミュレーションでは、コイル配置や EC 波の入射位置 は ITER のものを使用し、ECH・ECCD の効果はレイトレ イシングおよびフォッカー・プランクコードで計算し、温 度・密度分布はCDBM輸送モデルにより計算して、分布の 時間発展を無撞着に解くことにより磁束の消費を計算し た. その結果、プラズマ電流立ち上げ時(t=11.8-70 s)に 20 MWのEC波を入射することにより10%強程度全磁束の 消費が抑えられることを示した.

[壁洗浄]

EC 波は第1壁の洗浄手段としても使用できる可能性が ある. 超伝導トカマクにおいては運転中トロイダル磁場が 印加され続けるため、現在のトカマクで行われているショッ ト間でのテーラー放電洗浄 (TDC, Taylor discharge clearing) やグロー放電洗浄 (GDC, glow discharge cleaning) は 容易には行えなくなる. 壁洗浄のための別の手段を確立す るため、JT-60Uでは EC 波を用いた壁洗浄実験が行われた [74]. トロイダル磁場 (3.6 T) および水平磁場 (強度はト ロイダル磁場の0.2%)を印加した状態で基本波EC波を入 射することで真空容器全体に広がるプラズマが得られた. 水平磁場を印加しない場合は共鳴面近傍のみで発光が観測 され、有効な壁洗浄が行えないことが示唆された. 1秒間 のEC波入射の後の1分間に排出されたガス量は、TDC により1分間あたりに排出されたガス量の80%程度であ り、短時間の EC 波でもガス排出が有効であることが示さ れた. EC 放電洗浄をディスラプションに至った放電の後 に行い,その有効性を確認する実験も行った. EC 放電洗浄 を行わない場合は次のショットでプラズマ電流が立ち上が らなかったが、放電洗浄を行った場合は正常に立ち上が り、EC 放電洗浄が実際に有効であることを示唆する結果 が得られた.

3.2.4.2 ST における電流立ち上げ

ST ではアスペクト比を小さくするために中心ソレノイ ドコイルを設置する十分な空間スペースがなく、中心ソレ ノイドコイルを取り除くことが優先的な課題の一つになっ ている. 合体法や同軸ヘリシティ入射法など他の非誘導立 ち上げ方式と比べて炉工学的に有利なマイクロ波を用いる ECH・ECCDに対する期待は大きい[75]. ECHのみでのプ ラズマ着火から初期磁気面の形成に関しては古くは CDX-U [76]での報告があり、LATE[77]、TST-2[78]、CPD[79] でも報告されている. 弱い垂直磁場が印加されている時圧 力駆動電流が流れるがこの駆動電流は垂直磁場強度に反比 例するので電流立ち上げには使えない. LATE 装置では初 期磁気面形成後垂直磁場をさらに増大させて平衡を保ちな がらプラズマ電流を立ち上げ,ST 配位の形成まで行う実 験が行われた[80]. 図11に示されるように、5GHz, 180 kW, 65 ms のマイクロ波を低磁場側からトロイダル磁 場に斜めにOモードで入射した場合20kAまで電流を立ち 上げることができている.この時の電流増加率は~0.3 MA /sであり, LHCDの場合と遜色ない値である. 電流は~200 keVの高速電子テイルが担っている. バルクの電子温度は 低い(100 eV 以下)が電子密度は遮断密度以上であり、高

図11 LATE 装置における ECH・ECCD のみによるプラズマ着火から電流の立ち上げ,ST の形成[80].

調波加熱が起こっている. OXB モード変換により EBW が励起され,その EC 吸収により電流立ち上げ時の自己誘 導による逆電場に抗して高速電子テイルが形成・維持され て電流が駆動されていると考えられる.中型装置の MAST では 28 GHz,100 kW,90 ms のマイクロ波を低磁場側から O モードで中心柱に取りつけられたグラファイト製偏光反 射板に向かって入射し,Xモードに変換して反射させ,高 磁場側から UHR 層に到達させた[81].この時の電子密度 は2×10¹⁸ m⁻³で遮断密度以下であるがEBWによる加熱・ 電流駆動が起こり,垂直磁場の強度と湾曲率を制御して 33 kA まで電流を立ち上げた.今後米国オークリッジ研究 所の 28 GHz,350 kW,300 ms ジャイロトロンを移設して 電力を増強した実験を計画しており,今後の進展が期待さ れる.

3.2.5 電子バーンシュタイン波による加熱・電流駆動 3.2.5.1 トカマクにおける電子バーンシュタイン波加 熱・電流駆動研究

トカマクでも3.3節で述べるヘリカル装置と並んで XB 変換,OXB 変換による EBW 加熱・電流駆動の検証実験が 報告されている.XB 変換では,EBW の吸収を観測した先 駆的な実験が WT-3 で行われた[82].そこでは,弱磁場側 斜め上から O モード EC 波を入射して,真空容器内壁に設 置したコルゲートミラーで X モードとして反射させたの ち,EC 波が強磁場側から弱磁場側に向かうようにした.軟 X線および ECE 計測による電子温度分布から入射 EC 波が UHR 層で EBW に変換されドップラーシフトした EC 共鳴 で吸収されたと結論された.XB 変換実験は COMPASS-D でも行われた[83].そこでは,強磁場側斜め上にEC 波入射 ポートを設置しそこから弱磁場側に向かって EC 波を入射

し、UHR 層に到達させて EBW に変換した.トロイダル方 向に角度をつけて co 方向および counter 方向に入射したと きの一周電圧の変化を比較することにより, EBW による 電流駆動が行われたことを示唆する結果も得られた.これ らはいずれも遮断密度以下の領域での EBW 加熱・電流駆 動の利用である.もう1つのシナリオである OXB 変換に よる吸収に関しては TCV での実験例がある[84,85]. そこ では遮断密度以上の電子密度のHモードプラズマをター ゲットとし急峻な密度勾配を利用してマイクロ波入射角を 変えてモード変換効率の最適化を行った.そして ECH パ ワー変調による軟X線放射強度の変動から推定した吸収位 置がレイトレイシング計算による予測と近いという結果が 得られた.また,約2MWの中心加熱時(吸収位置は規格 化小半径で約 0.4) には、約 10% (~80 eV) の中心電子温 度の上昇が観測された(図12).これは遮断密度以上の日 モードプラズマで ECH・ECCD による制御の可能性を示 す実験であり、入射マイクロ波の偏波の最適化を行うこと によりさらに効率の高い加熱も期待できる.

3.2.5.2 ST における電子バーンシュタイン波加熱・電流 駆動研究

STでは遮断密度以上で XB 変換による EBW 加熱を検証 した TST-2の報告がある[86].そこでは,局所リミタによ りアンテナ前面に急峻な密度勾配を生み出してトンネル効 果で X モードを遮断層を横切って直接 UHR 層に到達させ EBW を励起した.図13に示すように 8.2 GHz,90 kW のマ イクロ波を入射してプラズマ蓄積エネルギーと軟 X線放射 の顕著な増加が見られた.軟 X 線放射分布計測よりプラズ マ中心で加熱が起こっていると思われる.またこの報告以 外にも,3.2.4.2節ですでに述べたように,EBW を用いた 非誘導電流立ち上げに関しての研究が進んでおり,磁力線 方向に大きな屈折率を持った EBW による電流駆動が実験 的に示されている.今後,入射アンテナの改良により入射 角と偏波を最適化してモード変換効率を上げ,レイトレイ シング計算と合わせて,遮断密度以上のプラズマにおける ECH・ECCDによるプラズマ制御法の確立をめざして研究 が進められるであろう.

3.2.6 おわりに

最近のトカマクおよび ST における ECH・ECCD 実験の 状況を概説した.加熱・電流駆動に関する物理研究に加 え,不安定性や分布の制御に向けた研究も多く行われた. トカマクにおいては,NTM や鋸歯状振動の制御に関して, 実時間制御に向けた研究も多く発表された. ITER への適 用に向けて今後も進展が期待される. ITB やプラズマ回転 への影響に関するメカニズムを解明するためには更なる研 究が必要であるが、装置間比較実験などにより研究が進展 することを期待したい.このほか、今回取り上げられなかっ た研究課題も多くある.例えば、ECH・ECCDによるディ スラプション緩和実験はかつて JFT-2M で先駆的な実験が 行われたが[87],最近でもFTUから報告があり[88],ま た ITPA 国際共同実験でも2008年に研究課題として新たに 追加された.これも原理実証の段階から制御ツールとして 使うことに力点が移りつつある研究といえる. さらに、プ ラズマのごく周辺部に ECH・ECCD を行うことにより ELMの周波数が増加する現象がJT-60Uで観測された.NB パワーを増加した場合との比較から単なる入力パワーの増

図12 OXBモード変換による電子温度加熱の例(TCV)[85].
(a) EC 波パワー,(b)線平均電子密度,(c)電子温度(軟 X線計測),(d) ECH 前後の電子温度分布(トムソン散乱計測).
レイトレイシングコード ART によると吸収位置は規格化小半径で 0.4 程度.

加では説明できず, EC 波特有の何かが影響を及ぼした可 能性があることがわかった[89]. ITPA 国際共同実験とし て2008年に追加されたこの話題は ECH・ECCD が ELM 制御ツールにもなりうる可能性を示唆していて,今後の研 究の進展が期待される.このほかにも,TCV からは電子温 度 ITB [90-92]や第3次高調波 X モード加熱[58,93,94]な どに関する興味深い研究結果が報告されているが割愛し た.ST では運転領域がマイクロ波の遮断密度となるため, これまで加熱手段としては主に NBI が用いられ,中型装置 や大電力での ECH・ECCD 実験はほとんど行われてきて いなかった.しかし,小型装置での EBW 実験結果を踏ま え,MAST や QUEST などの装置において遮断密度以上で EBW を用いた大電力 ECH・ECCD の実験が進められてお り,今後の研究の成果が期待される.

謝 辞

本稿を執筆するにあたり,日本原子力研究開発機構の 森雅博博士,小関隆久博士,鎌田裕博士,森山伸一博士, 伊丹潔博士,井手俊介博士,星野克道博士,大山直幸博士, 梶原健博士,吉田麻衣子博士,小林貴之博士,宮本斉児博士 から貴重な助言をいただきましたことを感謝いたします.

図13 TST-2球状トカマク装置における XB 変換を用いた EBW 加熱実験.マイクロ波を入射した場合としない場合の(a) プラズマ電流と漏洩マイクロ波電力,(b)入射,反射およ び正味のマイクロ波電力,(c)軟X線放射強度,(d)線積分 電子密度,(e)Ha 発光強度,(f)放射損失量,(g)プラズマ 蓄積エネルギーの時間発展.

参考文献

- [1] V. Erckman and U. Gasparino, Plasma Phys. Control Fusion. **36**, 1869 (1994).
- [2] B. Lloyd, Plasma Phys. Control. Fusion 40, A119 (1998).
- [3] T. Luce, IEEE Trans. Plasma Sci. 30, 734 (2002).
- [4] R. Prater, Phys. Plasmas 11, 2349 (2004).
- [5] H.P. Laqua, Plasma Phys. Control. Fusion 49, R1 (2007).
- [6] T. Watari et al., J. Plasma Fusion Res. 81, 149 (2005).
- [7] ITER Physics Basis, Nucl. Fusion **39**, 2137 (1999).
- [8] Progress in the ITER Phys. Basis, Nucl. Fusion 47, S1 (2007).
- [9] K. Yamazaki et al., J. Plasma Fusion Res. 79, 121 (2003).
- [10] S. Ide et al., J. Plasma Fusion Res. 83, 413 (2007).
- [11] T. Ozeki et al., J. Plasma Fusion Res. 77, 409 (2001).
- [12] O. Sauter et al., Phys. Plasmas 4, 1654 (1997).
- [13] R.J. La Haye, Phys. Plasmas 12, 05501 (2006).
- [14] A. Isayama et al., Nucl. Fusion 43, 1272 (2003)
- [15] R.J. La Haye et al., Phys. Plasmas 9, 2051 (2002).
- [16] A. Isayama et al., Nucl. Fusion 47, 773 (2007).
- [17] K. Nagasaki et al., Nucl. Fusion 43, L7 (2003).
- [18] K. Nagasaki et al., Nucl. Fusion 45, 1608 (2005).
- [19] R.J. La Haye et al., Nucl. Fusion 45, L37 (2005).
- [20] R. Prater et al., Nucl. Fusion 47, 371 (2007).
- [21] H. Zohm et al., Nucl. Fusion 39, 577 (1999).
- [22] M. Maraschek et al., Phys. Rev. Lett., 98, 025005 (2007).
- [23] S. Moriyama et al., Proc. 22nd IAEA Fusion Energy Conf., FT/P2-26, http://www-pub.iaea.org/MTCD/Meetings /FEC2008/ft_p2-26.pdf (2008); to appear in Nucl. Fusion (2009).
- [24] T. Kobayashi et al., to appear in Plasma Fusion Res. (2009).
- [25] A. Isayama et al., Nucl. Fusion 49, 055006 (2009).
- [26] C.C. Hegna and J.D. Callen, Phys. Plasmas 4, 2940 (1997).
- [27] F.W. Perkins *et al.*, Proc. 24th EPS Conf. Control. Fusion Plasma Phys., Part III, p.1017 (1997).
- [28] G. Giruzzi et al., Nucl. Fusion 39, 107 (1999).
- [29] N. Hayashi et al., Nucl. Fusion 44, 477 (2004).
- [30] R.J. La Haye et al., Nucl. Fusion 46, 451 (2006).
- [31] R.J. La Haye et al., Nucl. Fusion 49, 045005 (2009).
- [32] M. Asakawa et al., Fusion Eng. Design 53, 237 (2001).
- [33] Y. Ikeda et al., Nucl. Fusion 42, 375 (2002).
- [34] A. Isayama *et al.*, J. Plasma Fusion Res. SERIES 5, 324 (2002).
- [35] M. Maraschek et al., Nucl. Fusion 45, 1369 (2005).
- [36] H. Zohm et al., Nucl. Fusion 47, 228 (2007).
- [37] D.A. Kislov et al., Nucl. Fusion 47, S590 (2007).
- [38] F. Porcelli *et al.*, Plasma Phys. Control. Fusion **38**, 2163 (1996).
- [39] J.I. Paley *et al.*, Plasma Phys. Control. Fusion **51**, 055010 (2009).
- [40] M. Lennholm et al., Fusion Sci. Technol. 55, 45 (2009).
- [41] M. Lennholm et al., Phys. Rev. Lett. 102, 115004 (2009).
- [42] M. Murakami *et al.*, Phys. Rev. Lett. **90**, 255001; GA report GA-A24171 (2003).
- [43] M. Murakami et al., Nucl. Fusion 45, 1419 (2005).
- [44] M. Murakami *et al.*, Phys. Plasmas **13**, 056106 (2006).
- [45] J. Ferron et al., Proc. 22nd IAEA Fusion Energy Conf., EX /P4-27., http://www-pub.iaea.org/MTCD/Meetings/ FEC2008/ex_p4-27.pdf (2008).
- [46] J.R. Ferron et al., Nucl. Fusion 46, L13 (2006).

- [47] J. Lohr et al., Fusion Sci. Technol. 48, 1226 (2005).
- [48] S. Ide et al., Nucl. Fusion 47, 1499 (2007).
- [49] H. Takenaga et al., Proc. 22nd IAEA Fusion Energy Conf., EX/P3-2, http://www-pub.iaea.org/MTCD/Meetings/ FEC2008/ex_ p3-2.pdf (2008); to appear in Nucl. Fusion (2009).
- [50] K.H. Burrell et al., Phys. Plasmas 82, 153 (2001).
- [51] T.A. Casper *et al.*, Plasma Phys. Control. Fusion 48, A35 (2006).
- [52] J.E. Rice et al., Nucl. Fusion 39, 1175 (1999).
- [53] J.S. deGrassie et al., Phys Plasmas 11, 4323 (2004).
- [54] J.S. deGrassie et al., Phys Plasmas 14, 056115 (2007).
- [55] Y. Sakamoto *et al.*, Plasma Phys. Control. Fusion 48, A63 (2006).
- [56] M. Yoshida et al., Proc. 22nd IAEA FEC EX/3-1, http://www-pub.iaea.org/MTCD/Meetings/FEC2008/ ex_p3-1.pdf; submitted to Phys. Rev. Lett. (2008).
- [57] A. Scarabosio *et al.*, Plasma Phys. Control. Fusion 48, 663 (2006).
- [58] L. Porte et al., Nucl. Fusion 47, 952 (2007).
- [59] B.P. Duval *et al.*, Plasma Phys. Control. Fusion 49, B195 (2007).
- [60] K. Ida et al., Phys. Rev. Lett. 74, 1990 (1995).
- [61] J.E. Rice et al., Nucl. Fusion 47, 1618 (2007).
- [62] Progress in ITER Phys Basis, Chap. 8, Nucl. Fusion 47, S385 (2007).
- [63] T. Fuijta et al., Nucl. Fusion 47, 1512 (2007).
- [64] K. Kajiwara et al., Nucl. Fusion 45, 694 (2005).
- [65] M. Ushigome et al., Nucl. Fusion 46, 207 (2006).
- [66] G.L. Jackson et al., Nucl. Fusion 47, 257 (2007).
- [67] G.L. Jackson et al., Nucl. Fusion 48, 125002 (2008).
- [68] J. Bucalossi et al., Nucl. Fusion 48, 054005 (2008).
- [69] Y.S. Bae et al, Nucl. Fusion 49, 022001 (2009).
- [70] S. Itoh et al., J. Plasma Fusion Res. 79, 413 (2003).
- [71] K. Hanada et al., Nucl. Fusion 44, 357 (2004).
- [72] S. Shiraiwa et al., Phys. Rev. Lett. 92, 035001 (2004).
- [73] S. Miyamoto *et al.*, ITPA Integrated Operation Scenario topical group meeting, Lausanne (2008); *to be submitted*.
- [74] K. Itami et al., J. Nucl. Mater. 390-391, 983 (2009).
- [75] T. Maekawa et al., J. Plasma Fusioin Res. 80, 935 (2004).
- [76] C. B. Forest *et al.*, Phys. Rev. Lett. 68, 3559 (1992).
- [77] T. Yoshinaga et al., Phys. Rev. Lett. 96, 125005 (2006).
- [78] A. Ejiri et al., Nucl. Fusion 46, 709 (2006).
- [79] T. Yoshinaga et al., Proc. 22nd IAEA Fusion Energy Conf., EX/P6-9, http://www-pub.iaea.org/MTCD/Meetings/ FEC2008/ex_p6-9.pdf (2008).
- [80] H. Tanaka et al., Proc. 22nd IAEA Fusion Energy Conf., EX /P6-8, http://www-pub.iaea.org/MTCD/Meetings/ FEC2008/ex_p6-8.pdf (2008).
- [81] H. Meyer et al., Proc. 22nd IAEA Fusion Energy Conf., OV /3-2, http://www-pub.iaea.org/MTCD/Meetings/FEC 2008/ov_3-2.pdf (2008).
- [82] T. Maekawa et al., Phys. Rev. Lett. 86, 3783 (2001).
- [83] V. Shevchenko et al., Phys. Rev. Lett. 89, 265005 (2002).
- [84] A. Mueck et al., Phys. Rev. Lett. 98, 175004 (2007).
- [85] A. Pochelon et al., Nucl. Fusion, 47, 1552 (2007).
- [86] S. Shiraiwa et al., Phys. Rev. Lett. 96, 185003 (2006).
- [87] K. Hoshino et al., Phys. Rev. Lett. 69, 2208 (1992).
- [88] B. Esposito et al., Phys. Rev. Lett. 100, 045006 (2008).

Special Topic Article

- [89] N. Oyama et al., Proc. 22nd IAEA Fusion Energy Conf., OV /1-3, http://www-pub.iaea.org/MTCD/Meetings/FEC 2008/ov_1-3.pdf (2008), to appear in Nucl. Fusion (2009).
- [90] M.A. Henderson *et al.*, Nucl. Fusion 45, 1642 (2005).
- [91] T.P. Goodman *et al.*, Plasma Phys. Control. Fusion 47, B 107 (2005).
- [92] S. Coda et al., Nucl. Fusion 47, 714 (2007).
- [93] S. Alberti et al., Nucl. Fusion 45, 1224 (2005).
- [94] G. Arnoux *et al.*, Plasma Phys. Control. Fusion 47, 295 (2005).