

小特集 ドライエッチングの科学と技術の新局面

4. 高誘電率(High-k)材料のドライエッチング

斧 高一,高橋和生*,江利口浩二 京都大学大学院工学研究科

(原稿受付:2009年2月24日)

半導体集積回路デバイス (LSI) の高集積化・高速化に伴い,微細トランジスタのゲート容量を確保する一方ゲートリーク電流を抑制するためゲート絶縁膜に適用される高誘電率 (high-k) 材料のプラズマエッチング技術の現状と課題について,その基礎となるエッチング反応機構に関する今日の理解とともに概説する。また,関連するメタル電極材料のエッチングにも言及する。 High-k 膜 (HfO2などの遷移金属酸化物) の多くは,金属・ハロゲン化合物の揮発性が低く,さらに金属・酸素間結合が強いため,いわゆる難エッチング材料である。 BCl3プラズマを用いる HfO2エッチングでは,圧力・混合ガス (O2, Cl2など),あるいは基板バイアス電圧(入射イオンエネルギー)により,基板表面でのエッチング反応,およびエッチング反応と保護膜堆積の競合を制御して,high-k膜の異方的な高選択(対下地 Si)加工が得られる。

Keywords:

plasma etching, chlorine-containing plasma, BCl₃ plasma, high dielectric constant (high-k) materials, metal electrode materials, HfO₂, Pt, Ru, TaN

4.1 はじめに

半導体デバイスの高性能化(高集積化,高速化)・多様化 と, それに伴う回路パターンの微細化に対応して, 近年, 新しい材料やデバイス構造が検討され実用化に向けての研 究開発が盛んであり、微細トランジスタにおいて高誘電率 (high-k)材料をゲート絶縁膜として用いる high-k ゲートス タック技術は,今後の半導体技術開発の最重要課題の一つ である[1,2]. ゲート絶縁膜の薄膜化が限界に近づいてい る現在, SiO_2 膜 (k=3.9) や SiON 膜 (k=7-8) にかわり, さらに高い比誘電率 (k>20) のゲート絶縁膜を用いること によって、ゲート容量を確保しつつ物理的膜厚を厚くして ゲートリーク電流を抑制することができる. High-k ゲート 絶縁膜としては, リーク電流, 移動度, 耐熱性, 膜中・界 面欠陥, 不純物拡散などの観点から, 金属酸化物 HfO₂, ZrO_2 , $zrSi_xO_y$, $zrSi_xO_y$, $zrSi_xO_y$, $zrSi_xO_y$ に Al₂O₃やその複合酸化物 (Hf_{1-x}Al_xO_y, Zr_{1-x}Al_xO_y) などが 候補に挙がり、いずれも Hf系の膜が現在最も有力とされ る. 一方ゲート電極には、まず従来の多結晶 Si(poly-Si)が 適用されるが、poly-Si の空乏化によるゲート容量低下、B の (p型 poly-Si ゲート電極から) ゲート絶縁膜を通過して Si 基板への侵入, また high-k ゲート絶縁膜との界面におけ るフェルミレベルのピニングの影響を排除するため、メタ ルゲート電極の開発が求められる[3,4].メタル電極とし ては, Ti, Ta, Pt, Ir, Ru, W, 導電性窒化物 TiN, TaN, お よびそれらの積層構造などが候補に挙がる. これら high-k 絶縁膜材料やメタル電極材料の多くは、難エッチング材料 として知られる.

4. Dry Etching Technology of High Dielectric Constant (High-k) Materials
ONO Kouichi, TAKAHASHI Kazuo* and ERIGUCHI Koji

*現在:京都工芸繊維大学工芸科学研究科

本章では、high-k ゲートスタック形成プロセスに必要なhigh-k 絶縁膜材料のドライ(プラズマ)エッチング技術の現状、および課題と展望について、その基礎となるエッチング反応機構に関する今日の理解とともに述べる。また最後に、メタルゲート電極材料のエッチングにも言及する。

4.2 High-k 絶縁膜材料のエッチング

High-k ゲートプロセスにおいて,ゲートスタック形成後,コンタクト形成のため,トランジスタのソース・ドレイン領域上のhigh-k 絶縁膜をエッチングにより除去する必要がある.現状ではフッ酸などによるウエットプロセスに頼っているが,ドライエッチング技術が望まれ,下地 Si 基板に対する高選択性(high-k/Si \gg 1)が求められる.また,high-k 膜のドライエッチングは,high-k ゲートプロセスのみならず,high-k 膜の成膜装置(化学気相堆積/CVD,原子層堆積/ALD)における in-situ チェンバークリーニングにも不可欠である.

High-k 膜 (HfO₂, ZrO₂, Al₂O₃ など)のドライエッチング に関しては、 $\mathbf{表}1$ に示すように、Al 塩化物を除いてハロゲン化物の融点・沸点が高く[5]、ハロゲン系ガスを用いる 通常のプラズマエッチングでは蒸気圧が高い(揮発性が高い)反応生成物が得られにくい。さらに、 $\mathbf{表}2$ に示すように、Hf-O、Zr-O 結合が強い(結合エネルギーが大きい)こともあり[5]、HfO₂、ZrO₂ はいわゆる難エッチング材料である。エッチング反応機構の観点からは、自発的(熱的)な 化学反応やイオンアシスト反応のような反応活性種の化学的作用が支配的なエッチングは難しく、高エネルギー入射

corresponding author's e-mail: ono@kuaero.kyoto-u.ac.jp

表 1 High-k絶縁膜材料エッチングにかかわるハロゲン化合物の融点と沸点[5].

Element	Halogen compound	Melting point (℃)	Boiling point (℃)
Al	AlF ₃	2250	1276
(Z = 13)	AlCl ₃	192.6	_
	$AlBr_3$	97.5	255
Si	SiF ₄	- 90.2	-86
(Z = 14)	SiCl ₄	-68.85	57.65
	$SiBr_4$	5.2	154
Zr	ZrF ₄	_	912 sp
(Z = 40)	$ZrCl_4$	_	331 sp
	$ZrBr_4$	_	360 sp
Hf	HfF ₄	_	970 sp
(Z = 72)	HfCl ₄	_	317 sp
	$HfBr_4$	_	323 sp

sp: sublimation point

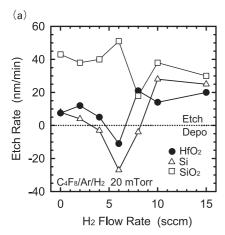
表 2 High-k絶縁膜材料エッチングにかかわる 2 原子分子の結合 強度[5].

Bond	Bond	Bond	Bond	
	strength (eV)		strength (eV)	
B-O	8.38	Si-O	8.29	
B-F	7.85	Si-F	5.73	
B-Cl	5.30	Si-Cl	4.21	
B-Br	4.11	Si-Br	3.81	
		Si-Si	3.39	
C-O	11.15	Zr-O	8.03	
C-F	5.72	Zr-F	6,38	
C-Cl	4.11	Zr-Cl	5.11	
C-Br	2.90	Zr-Br	_	
Al-O	5.30	Hf-O	8.30	
Al-F	6.88	Hf-F	6.73	
Al-Cl	5.30	Hf-Cl	5.16	
Al-Br	4.45	Hf-Br	_	

イオンによる物理的スパッタリングの効果が不可欠と考えられる。ただ Hf, Zr の塩化物・臭化物はフッ化物と比較して多少揮発性が高く,イオンアシスト反応など化学的な反応が介在するエッチングが期待できる。すなわち,入射イオンエネルギーの物理的作用による Hf-O, Zr-O 結合の切断,反応種(エッチャント)の化学的作用による Hf, Zr の塩化物・臭化物の形成,物理的・化学的作用による反応生成物の脱離,の過程でエッチングが進行する。ここで,さらに酸素 O を引き抜く(取り除く)機構が付加されるとエッチングが比較的容易になる。なお,シリケート($HfSi_x$ O_y, $ZrSi_xO_y$)や複合酸化物($Hf_{1-x}Al_xO_y$, $Zr_{1-x}Al_xO_y$)のエッチングは、Hfや Zr と比較して Si や Al のハロゲン化物の揮発性が高く, HfO_2 , ZrO_2 よりエッチングは容易であると考えられる。

これまで、 BCl_3/Cl_2 プラズマによる $Zr_{1-x}Al_xO_y$ 膜[6]、 Cl_2 /Ar プラズマによる ZrO_2 膜[7,8]、 BCl_3 、 BCl_3/Cl_2 プラズマによる HfO_2 、 ZrO_2 膜[9-14]、 Cl_2/Ar 、 SF_6/Ar 、 $CH_4/H_2/Ar$ プラズマによる HfO_2 膜[15]、 CF_4 、 $Cl_2/HBr/O_2$ プラズマによる HfO_2 膜[16]、 Cl_2/HBr 、 CF_4/CHF_3 プラズマによる HfO_2 膜[16]、 Cl_2/HBr 、 CF_4/CHF_3 プラズマによる C_4/CHF_3 プラズマによる C_4/CHF_3 プラズマによる C_4/CHF_3 プラズマによる C_4/CHF_3 C_4/C

マによる ZrO_x 膜[21], BCl_3 , BCl_3 / Cl_2 , BCl_3 / O_2 , BCl_3 / O_2 プラズマによる HfO_2 膜[22-25],などのエッチングが研究されている.いずれも,下地 Si 基板に対する高いエッチング選択性 (high-k/Si>1) を得るためのエッチングケミストリーに重点が置かれる.ハロゲン系プラズマによる金属酸化物と Si のエッチングを比較すると,通常 Si エッチング速度の方が大きく,high-k/Si 選択比> 1 は困難である.したがって high-k/Si 高選択性の実現には,Si のエッチャントであるハロゲン原子ラジカルの密度を減少させるとともに,Si 表面への選択的な保護膜形成 (重合膜堆積)を促進させて,Si エッチング反応を抑制すること,あるいはhigh-k 膜と Si のエッチングにかかわるイオンエネルギーのしきい値の差を利用して (high-k 膜のしきい値<Si のしきい値),低イオンエネルギー条件下でエッチングすることが不可欠となる.


4.3 フルオロカーボンプラズマによる HfO₂ エッチング

フルオロカーボンプラズマでは、C含有量の多いC4F8 の Ar 高希釈条件 $[C_4F_8]/([Ar] + [C_4F_8]) < 1%$ において、 SiのエッチャントであるF原子密度の減少をはかり、Si 表面への C_xF_y 膜堆積の効果とあわせて、HfO₂/Si, SiO₂/Si エッチング選択比>1が得られる[19]. さらに、 $\mathbf{図1}$ (a)に 示すように、C₄F₈/Ar プラズマに微量の H₂を添加すると (4~8 sccm), Si 表面での堆積が顕著になり、HfO₂/Si, SiO₂/Si 高選択比≫10(実質的に選択比∞)が得られる[20]. 図は誘導結合型高周波プラズマ (ICP) 装置 (チェンバー直 径 25 cm, 高さ 25 cm) による実験であり (ICP 13.56 MHz, $P_{\rm RF} = 280~{\rm W}$; RF バイアス 13.56 MHz, $P_{\rm rf} \approx 50~{\rm W}$; 全ガス 流量 $F_{gas} = 250 \text{ sccm} + \text{H}_2$ 流量;Ar 247.5 sccm,C₄F₈ 2.5 sccm; 圧力 $P_0 = 20 \text{ mTorr}$), 基板ステージの直流自己バイ アス電圧は $V_{dc} \approx -90 \text{ V}$ 、イオン入射エネルギーは $E_{\rm i} = V_{\rm p} - V_{\rm dc} \approx 110 \, {\rm eV}, \,\,\,$ プラズマ密度は $n_{\rm e} \approx 1.0 \, {\rm -} \, 1.5 \times 10^{11}$ cm^{-3} 程度である. ここで、 V_p はプラズマ電位を示す. フル オロカーボン重合膜を Si 上に選択的に堆積させて high-k/ Si 選択比∞を得る考えは、BCl₃/C₄F₈ プラズマによる ZrO_x 膜エッチングでも見られる[21].

このような HfO_2/Si 高選択性は、これまで多くの研究が行われている SiO_2/Si 高選択性エッチングと同じ考え方である.フルオロカーボンプラズマに H_2 を混合すると、気相中で、H と F との反応 H+F →HF によって F ラジカルが減少、さらに、 CF_x と F との反応 $CF_x+(4-x)F$ → CF_4 が抑制されて、Si 表面への堆積種である CF_x ラジカルが増大し、 HfO_2 /Si, SiO_2/Si 選択比が増大する.プラズマの四重極質量分析 (QMS) では、図 1 (b) に示すように、反応生成物として、フッ化物 HfF_x とともに、比較的揮発性の高い炭化水素化合物 $HfCH_x$ 、フッ化水素化合物 HfH_xF が検出されるが [20]、 HfO_2 エッチング機構の解明はまだこれからである.

4.4 BCI₃プラズマによる HfO₂エッチング

 BCl_3 混合プラズマでは、B あるいは BCl により、 HfO_2 表面においてHf-O結合が切断され、気体種である硼素・酸

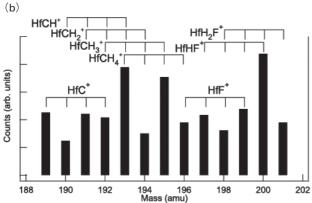


図 1 ICP-C₄F₈/H₂/Arプラズマによる(a) HfO₂, Si, SiO₂エッチング速度の H₂ 流量依存, (b) HfO₂ エッチングにおける QMS スペクトル (F_{H2} = 8 sccm, イオンスペクトル/ionizer off) (F_{Ar} = 247.5 sccm, F_{C4F8} = 2.5 sccm, P_0 = 20 mTorr, P_{RF} = 300 W, P_{rf} = 50 W) [20].

素・塩素化合物 BOCl, $(BOCl)_3$ の形で酸素が除去される. さらに,Cl により, HfO_2 表面において,揮発性の塩化物 $HfCl_4$ が形成されて Hf が除去され,エッチングが進む [例えば $HfO_2(s)+2BCl+4Cl \rightarrow HfCl_4+2(BOCl)$]. ここで,Cl 原子はSi のエッチャントであるため, BCl_3 の混合割合を増大して,Cl 密度を減少するとともに,Si 表面への B_xCl_y 膜堆積の効果とあわせて, HfO_2/Si エッチング選択比> 1が得られる[6,9-14,22-25]. なお, HfO_2 エッチングの後,下地Si 表面に残るB の除去が必要とされ, H_2 プラズマによるクリーニングなども検討されている[26,27].

4.4.1 エッチング速度・選択比

BCl₃ プラズマによる HfO₂ エッチングでは,図 2 に示すように,基板ステージへの RF バイアスなし (ノンバイアス) の低イオン入射エネルギーの下,HfO₂/Si 高選択比>10 が得られ,さらに図 3 に示すように,O₂混合により HfO₂エッチング速度は顕著に増大する [23, 24].図は電子サイクロトロン共鳴 (ECR) プラズマ装置 (チェンバー直径36 cm,高さ40 cm) による実験であり(ECR 2.45 GHz, $P_{\rm MW}$ =600 W;RF バイアス 13.56 MHz, $P_{\rm rf}$ =0 W;全ガス流量 $F_{\rm gas}$ =40 sccm;圧力 P_0 =5 mTorr),基板ステージへのイオン入射エネルギーは $E_{\rm i}$ = $V_{\rm p}$ – $V_{\rm f}$ ≈ 10-15 eV,プラズマ密度は $n_{\rm e}$ ≈ 2-5×10 cm $^{-3}$ 程度である.ここで, $V_{\rm f}$ は浮遊電位を示す.

具体的には[23,24], 圧力 $P_0 = 10 \text{ mTorr}$ のECR-BCl₃

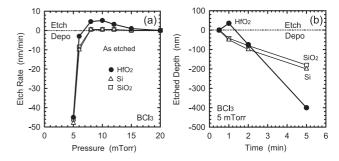


図 2 ECR-BCl₃ プラズマにおける(a) HfO₂, Si, SiO₂ エッチング 速度の圧力依存と、(b) エッチング深さのエッチング時間 依存($F_{\rm gas}$ = 40 sccm, $P_{\rm MW}$ = 600 W, $P_{\rm rf}$ = 0 W) [23].

プラズマにおいて、 HfO_2 エッチング速度は ~ 5 nm/min 程度であり、 HfO_2 /Si, HfO_2 /SiO₂ 選択比> 10 が得られる. また、 $P_0 \leq 6$ mTorr の低圧力では、 HfO_2 、Si, SiO_2 すべての表面で B_xCl_y 化合物の堆積が著しく、エッチングが妨げられる.

ここで、 BCl_3 プラズマに O_2 を混合すると、気相中で、表面への堆積種である BCl_x ラジカルが減少するとともに、BCl, Cl ラジカルが増大する [例えば 2 $BCl_2+O \rightarrow BOCl+BCl+2Cl]$. その結果、 $P_0=5$ mTorr の $BCl_3/30\%-O_2$ プラズマにおいて、 HfO_2 エッチング速度~50 nm/min が得られ、選択比は HfO_2 /Si>10、 HfO_2 /Si O_2 ~ 2 程度である。しかし、さらに O_2 混合割合を>30% に増大すると、気相で、 B_2O_3 のような固体種が形成され [例えば 2 $BCl_3+3O \rightarrow B_2O_3+6Cl <math>]$ 、すべての表面で B_xO_y 化合物の著しい堆積が生じ、エッチングが妨げられる。

このような添加ガスの効果は Cl_2 でも生じ、 BCl_3/Cl_2 、 $BCl_3/Cl_2/O_2$ プラズマにおいて、それぞれ HfO_2 エッチング 速度~100 nm/min, ~150 nm/min が得られるととも に、BCl₃/20~50%-Cl₂プラズマでは、Si表面にはまだB_xCl_y 堆積が残りエッチングと堆積の競合でSiエッチング速度~ 0であり、高い high-k/HfO₂ 選択比>100が得られる[24]. また、BCl₃ 0% (pure Cl₂) では HfO₂ エッチング速度~ 0 であり、HfO₂エッチングにはBあるいはBCI種が必要であ ることがわかる(SiO₂エッチング,およびSi表面の自然酸 化膜除去に対しても同様). ここで, 高い HfO₂ エッチング 速度>50 nm/min は、high-k 膜の成膜装置のチェンバーク リーニングに対応できる値である. なお, 添加ガスを Ar とした BCl₃/Ar プラズマでは、HfO₂、Si, SiO₂ すべての表 面でB_xCl_y化合物の堆積が増大する.したがって,添加ガス O₂, Cl₂ は, 単なる希釈ガスではなく, 気相あるいは表面で の化学反応により、堆積種 BCl_xの減少に大きく寄与してい ると考えられる.

4.4.2 表面モフォロジー

図 4 に、ECR-BCl₃ プラズマ(図 2) に 5 min、および BCl₃ /O₂ プラズマ(図3(a))に 0.5 min 暴露した HfO₂ サンプル 表面の走査型電子顕微鏡(SEM)像を示す[23]. それぞれ のエッチング条件は、 (a) $P_0=5$ mTorr in BCl₃、 (b) $P_0=10$ mTorr in BCl₃、 (c) $P_0=5$ mTorr in BCl₃/30% - O₂、 (d) $P_0=10$ mTorr in BCl₃/50% - O₂、である.ここで、 (a)、 (d) の表面は、堆積(デポ)のためラフであり(表面モフォロ

ジーが悪く),一方,(b),(c)表面は,エッチングされてスムーズである(表面モフォロジーが良好である). また,デポが著しい(d)の表面には,大きな粒子のような塊も見える.

4.4.3 表面化学組成

表3に、ECR-BCl₃混合ガスプラズマ (図2、図3)に曝露した HfO_2 、Si 表面の X 線光電子分光 (XPS) 分析により求めた表面化学組成を示す[24]. ここで、曝露時間は、エッチング条件では HfO_2 残膜厚~25 nm、デポ条件では HfO_2 上の堆積膜厚~200 nm 程度になるように決めた、エッチング条件下の HfO_2 表面 (ii) ~ (v) では、エッチング 前後で表面化学組成はほとんど変わらないが、わずかの量の B、Cl が認められる.一方、デポ条件下の HfO_2 表面 (vi)

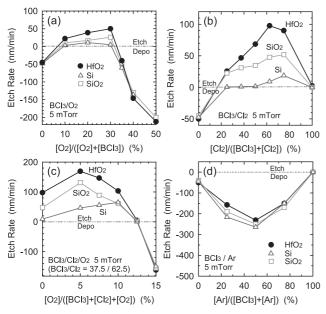


図 3 ECR-(a) BCl₃/O₂, (b) BCl₃/Cl₂, (c) BCl₃/Cl₂/O₂, (d) BCl₃/Ar プラズマにおける HfO₂, Si, SiO₂ エッチング速度のガス組成依存 (P_0 =5 mTorr, F_{gas} = 40 sccm, P_{MW} = 600 W, P_{rf} = 0 W) [24].

 \sim (viii) では,厚い堆積膜のため $\rm Hf$ がまったく観測されず, $\rm B$, $\rm Cl$ の量が多い.ここで, (vi), (viii) では組成比 $\rm Cl/B$ が比較的大きく, $\rm BCl_3$, $\rm BCl_3$ /Ar プラズマでは $\rm B_xCl_y$ 膜堆積 が主であること,また (vii) では組成比 $\rm O/B$ が大きく, $\rm BCl_3$ / $\rm O_2$ プラズマでは $\rm B_xO_y$ 堆積が主であることがわかる.

一方、エッチング条件下の Si 表面 (iii) \sim (v) では、エッチング表面ではあるが B, Cl の量が多く、Si の組成が減少している。このことは、Si 表面では、エッチング条件下であるが B, Cl, 堆積が残り、エッチングと堆積が競合し、結局 Si エッチング速度の低下により、HfO2/Si エッチング選択 比増大に寄与していることがわかる。なお、エッチング Si 表面 (ii) では、B, Cl の量は少なく、エッチング HfO2 表面 (ii) と同程度であり、BCl3($P_0=10$ mTorr)プラズマでは BCl3の分解が少ないことを示唆する。また、HfO2、Si エッチング速度の増大は、表面の B組成の減少と Cl組成の増大と相関があることが、BCl3/Cl2プラズマのデータ (iv)、(v) を見るとよくわかる。

図5に, ECR-BCl₃混合ガスプラズマ(**図2**, **図3**;表3) に曝露した HfO₂, Si 表面の XPS Cl 2p, B 1s ナロースキャ ンスペクトルを示す[24]. エッチング条件下の HfO2 表面 (ii)~(v)ではスペクトル強度が小さく似通っているが、デ ポ条件下の HfO_2 表面(vi)~(viii)のスペクトル強度は大き く, エッチング条件下の Si 表面(ii) \sim (v) と似ている. ここ で、Cl 2p スペクトルはスピン - 軌道分裂 (spin-orbit splitting of 1.6 eV, peak area ratio [i = 3/2] / [i = 1/2] = 2) [28] を考慮してデコンボリューションを行い、 $Cl2p_{3/2}$ のピーク を示している. なお, B 1s スペクトルは, B-O, B-Cl, B-Si 結合が混じり合い複雑で、ピーク同定はまだ十分でない [29]. 図の Cl 2p スペクトルは, 表 3 について述べた HfO_2 /Si エッチング選択比の要因(HfO₂, Si 表面ともエッチング 生成物である塩化物が形成されるが、Si表面ではB_xCl_y堆積 が残りエッチングとデポが競合してエッチングが抑制さ れ、高い HfO₂/Si 選択性に至る) を明確に示している.

表 3 ECR-BCI₃ 混合ガスプラズマ(図 2 、図 3 参照)に曝露した HfO₂、Si 表面の XPS 分析により求めた化学組成(相対値)(F_{gas} = 40 sccm, P_{MW} = 600 W, P_{rf} = 0 W) [24].

Substrate		Plasma conditions	P_0 (mTorr)	Regime	Ref.	Hf	O	В	Cl
HfO_2	(i)	Before exposure	_	_	_	27.9	72.1	0.0	0.0
	(ii)	BCl ₃	10	Etching	Fig. 2	25.2	71.2	2.2	1.4
	(iii)	$BCl_3/30\%-O_2$	5	Etching	Fig. 3(a)	25.7	71.7	2.0	0.6
	(iv)	BCl ₃ /50%-Cl ₂	5	Etching	Fig. 3(b)	25.7	71.1	1.7	1.5
	(v)	BCl ₃ /62.5%-Cl ₂	5	Etching	Fig. 3(b)	25.5	71.4	1.4	1.7
	(vi)	BCl ₃	5	Deposition	Fig. 2	0.0	21.6	52.2	26.2
	(vii)	BCl ₃ /50%-O ₂	5	Deposition	Fig. 3(a)	0.0	42.8	48.3	8.9
	(viii)	BCl ₃ /50%-Ar	5	Deposition	Fig. 3(d)	0.0	21.1	54.3	24.6
Sub.		Plasma conditions ^a	P_0 (mTorr)	Regime	Ref.	Si	O	В	Cl
Si	(i)	Before exposure	_	_	_	63.5	36.5	0.0	0.0
	(ii)	BCl ₃	10	Etching	Fig. 2	49.4	45.1	2.0	3.5
	(iii)	BCl ₃ /30%-O ₂	5	Etching	Fig. 3(a)	43.0	38.0	13.1	5.9
	(iv)	BCl ₃ /50%-Cl ₂	5	Etching	Fig. 3(b)	17.2	20.3	52.9	9.6
	(v)	BCl ₃ /62.5%-Cl ₂	5	Etching	Fig. 3(b)	30.5	29.4	29.5	10.6

^a Under plasma conditions in the deposition regime, the XPS spectrum and atomic compositions on Si surfaces were almost the same as those on HfO₂.

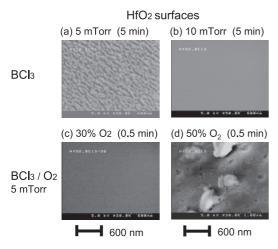


図 4 ECR-BCl₃ (図 2), BCl₃/O₂ (図 3 (a)) プラズマに曝露した HfO₂ 表面の SEM 像 ($F_{gas}=40$ sccm, $P_{MW}=600$ W, $P_{rf}=0$ W) [23].

4.4.4 エッチング形状

図 6 に、ECR-BCl₃/30%-Cl₂ プラズマ(図 3 (b); $P_0 = 5$ mTorr, RF バイアス $P_{rf} = 0$ W/ノンバイアス, HfO₂ エッ チング速度~30 nm/min, HfO₂/Si 選択比>100) による HfO₂ 膜のエッチング形状の SEM 像を示す[24]. ここ で、エッチング時間は約4 min (~150% オーバエッチ) で あり、基板へのイオン入射エネルギーは $E_i = V_p - V_f \approx 10$ -15 eV 程度と推定される. 図中, フォトレジスト(PR)マ スクは、デポのためややゆがんでいるが、HfO₂膜側壁 は、下地Si近くの小さなノッチを除くと、ほぼ異方的に エッチングされている. したがって, ノンバイアスの低イ オンエネルギー条件下であるが、HfO2は、純粋な化学エッ チングでなく、イオンアシスト反応によりエッチングされ ていることが示唆される. 図には、比較のため、ECR-BCl3 プラズマ (図 2 (a); $P_0 = 10 \text{ mTorr}$) において基板 RF バイ アスを印加した場合 (RF バイアス $P_{rf} = 20 \text{ W at } 13.56 \text{ MHz}$, HfO₂ エッチング速度~27 nm/min, HfO₂/Si 選択比~0.64) の HfO_2 膜エッチング形状もあわせて示す.ここで,エッチ ング時間は約2 min (~ジャストエッチ) であり、イオンエ ネルギーは $E_i = V_p - V_{dc} \approx 75 \text{ eV}$ 程度と推定される. HfO₂ 側壁は、反応生成物のパターン側壁への再堆積に起因した テーパ形状を示している。また、オーバエッチをすると、 下地 Si の顕著な後退が見られた.

4.4.5 エッチング反応機構(しきい値エネルギー,温度依存性,反応生成物)

上に述べたとおり、ECR-BCl₃ 混合プラズマを用いて、RF バイアスなし(ノンバイアス)の条件下で、高い HfO_2 エッチング速度(>20-100 nm/min)と高い HfO_2 /Si 選択性(>10-100)を有するほぼ異方性の HfO_2 エッチングが得られることがわかった.しかし、このノンバイアスエッチングにおけるイオン入射エネルギー $E_i\approx 10-15$ eV は、BCl₃、BCl₃/Cl₂プラズマによる HfO_2 エッチングに関してこれまで知られるイオンエネルギーのしきい値 $E_{th}\sim 25$ eV [10] よりはるかに低く、従来のイオンアシスト反応機構では十分理解できず、エッチング機構の解明はまだこれからである.

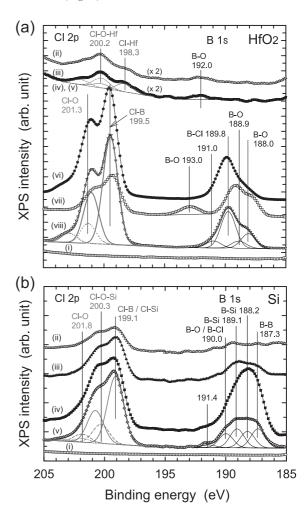
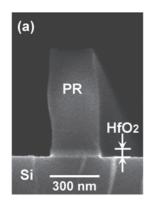



図 5 ECR-BCl₃ 混合ガスプラズマ(図 2 、図 3 ;表 3)に曝露した(a) HfO₂,(b) Si 表面の XPS Cl 2*p*, B 1*s* ナロースキャンスペクトル[24].

図7に、ICP-BCl₃、Cl₂プラズマ(ICP 13.56 MHz、 P_{RF} = 300 W;RF バイアス 13.56 MHz, $P_{\rm rf}$ =0~50 W;全ガス流 量 $F_{\text{gas}} = 40 \text{ sccm}$;圧力 $P_0 = 10 \text{ mTorr}$)で測定した HfO_2 , Si, SiO₂エッチング速度の入射イオンエネルギー $(E_i = V_p - V_{dc})$ への依存性を示す[25]. HfO₂ エッチングの しきい値エネルギーは、 Cl_2 プラズマの $E_{th} \approx 25 \text{ eV}$ から、 BCl_3 プラズマでは $E_{th} \approx 11 \text{ eV}$ 程度に低下し、 HfO_2 エッチ ングにおけるB, BCl 種の重要さがわかる. また, BCl₃/ 50%-Cl₂プラズマでは $E_{th} \approx 14 \text{ eV}$, BCl₃/20%-O₂プラズマ では $E_{th} \approx 8 \text{ eV}$ 程度であり[25], O_2 混合により HfO_2 エッ チングが比較的容易になる(エッチング速度が増大する)こ とと矛盾しない. さらに、図8に、ICP-BCl₃、BCl₃/O₂、 BCl₃/Cl₂, Cl₂ \mathcal{I} \mathcal $E_{\rm i} = V_{\rm p} - V_{\rm dc} \approx 50 \, {\rm eV}$)における ${\rm HfO_2}$ エッチング速度の基 板温度 (T_s) への依存性を示す[25]. BCl₃/O₂ プラズマでは 活性化エネルギーが大きく(温度依存性の傾きが大きく), 化学反応性が大きいことが示唆される. このような BCl₃/ O_2 ガスケミストリーによる HfO_2 エッチングの特徴は,プ ラズマエッチングのみならず、チェンバークリーニングに有 用なプラズマを用いない熱 (サーマル) エッチングにおいても 認められる[30].

また、**図 9** に、ICP-BCl₃/20% - O₂プラズマ ($P_0 = 10 \text{ mTorr}$,

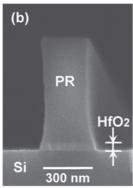


図 6 ECR-BCl₃ プラズマによるフォトレジストマスク (PR) を用いた HfO₂ エッチング形状の SEM 像($F_{\rm gas}$ = 40 sccm, $P_{\rm MW}$ =600 W)[24]: (a) BCl₃/30%-Cl₂ プラズマ (図 3 (b); P_0 = 5 mTorr, $P_{\rm rf}$ = 0 W, ~150% オーバエッチ), (b) BCl₃ プラズマ (図 2 (a); P_0 = 10 mTorr, $P_{\rm rf}$ = 20 W, ~ジャストエッチ).

 $P_{\rm rf}$ = $0\sim50~{\rm W}/E_{\rm i}=V_{\rm p}-V_{\rm dc}=15\sim100~{\rm eV})$ による ${\rm HfO_2}$ エッチングにおける QMS スペクトルを示す。反応生成物は ${\rm HfCl_x}$ が主であり ${\rm HfCl_3}$ の量が最も多いこと,RF バイアスパワーの増大(ひいてはエッチング速度の増大)に伴ない反応生成物の量も増大することがわかる。

4.5 メタル電極材料のエッチング

High-kゲートスタックプロセスにおけるゲート電極エッチングに求められる加工特性は、本小特集の第2章で述べた従来のpoly-Siゲート加工と基本的にかわりない。メタルゲート電極としては、金属酸化膜半導体型電界効果トランジスタ(MOSFET)のしきい値電圧($V_{\rm th}$)制御の観点から、表4に示す N-MOS、P-MOS に対して別々の仕事関数を有するメタル材料を選択し、図10に示すようなデュアルメタルゲート構造となる[3,4]。メタルゲート電極の形状と寸法精度に関しては、ゲート電極加工時のみならず、その後に続く上の4.2~4.4節で述べたhigh-k絶縁膜エッチング除去プロセスに際しても注意が必要であり、電極形状と寸法に変化を及ぼさない除去プロセスであることが肝要である。

メタル電極材料 (Ti, Ta, Pt, Ir, Ru など) のエッチング に関しては、ハロゲン化合物や酸素化合物の融点・沸点を 比較すると[5], 表5に示すように, Ti, Ta の塩化物・臭 化物の揮発性が中程度で、塩素系・臭素系プラズマによる エッチングが可能である. Ta はフッ化物の揮発性が高く, フッ素系プラズマによるエッチングが容易である. また, Ruはハロゲン化物の揮発性は低いが酸化物の揮発性が中 程度であり、酸素系プラズマによるエッチングが可能であ る. したがって、Ti, Ta はハロゲン系プラズマを、また Ru は酸素系プラズマを用いて, 基本的にイオンアシスト反応 にもとづきエッチングでき, 異方性エッチング形状が得ら れる. TaN, TiN のような導電性化合物についても, それ ぞれの2原子分子の結合強度Ti-N (4.93 eV), Ta-N (6.32 eV)は、ハロゲン化物 Ti-Cl(5.12 eV)、Ti-F(5.90 eV)、 Ta-Cl (5.63 eV), Ta-F (5.94 eV) と同程度であり[5], ハ ロゲン系プラズマによるエッチングに問題はない. 一方, Pt, Ir は、ハロゲン化物の融点・沸点が高く、ハロゲン系

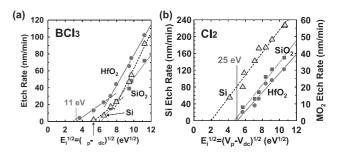


図 7 ICP-(a) BCl₃, (b) Cl₂ プラズマにおける HfO₂, Si, SiO₂ エッチング速度の入射イオンエネルギー(E_i = V_p - V_{dc})依存 (P_0 = 10 mTorr, F_{gas} = 40 sccm, P_{RF} = 300 W, P_{rf} = 0~50 W) [25]. 図中, V_p はプラズマ電位, V_{dc} は基板ステージの 直流自己バイアス電圧.

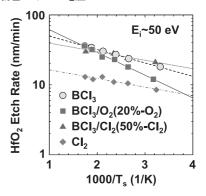


図 8 ICP-BCl₃ 混合ガスプラズマにおける HfO_2 , Si, SiO₂ エッチング速度の基板温度(T_s)依存(P_0 =10 mTorr, F_{gas} = 40 sccm, P_{RF} = 300 W, P_{rf} = 20~30 W) [25].

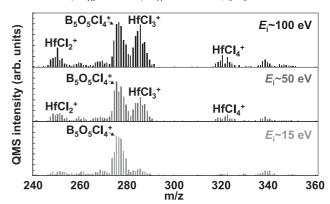


図 9 ICP-BCl₃/20% - O₂ プラズマによる HfO₂ エッチングにおける QMS スペクトル(イオンスペクトル/ionizer off) (P_0 =10 mTorr, $F_{\rm gas}$ = 40 sccm, $P_{\rm RF}$ = 300 W, $P_{\rm rf}$ = 0~50 W) [25].

プラズマエッチングにおいて揮発性の反応生成物が得られず、代表的な難エッチング材料である。エッチング反応機構の観点からは、化学的作用がかかわるエッチングは難しく、高エネルギー入射イオンによる物理的スパッタリングに頼らざるを得なく、図11に示すように、エッチング側壁はテーパ形状となる[31,32].ここで、Pt や Ru エッチングについては、高誘電体/強誘電体キャパシタの下部電極加工に関連してこれまで多くの研究が報告され参考になる[31-34].

これまで、high-k ゲートスタックにおけるメタルゲート電極加工の観点からは、BCl $_3$ プラズマによる TiN/TaN [35]、Cl $_2$ /HBr/O $_2$ プラズマによる TaN、TiN[36]、Cl $_2$ /SF $_6$

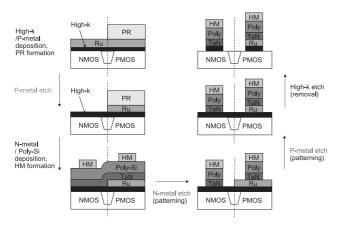


図10 High-k絶縁膜を有するデュアルメタルゲート構造の加工プロセスフローの例.

表 4 メタルゲート電極材料の例[3,4].

FET	Metals	Nitrides, Carbides
N-MOSFET	Ti, Ta	TaN, TaC
P-MOSFET	Pt, Ir, Mo, Ru	
Midgap	W	TiN

/Ar, $Cl_2/SF_6/O_2/Ar$ プラズマによる TaN[37], BCl_3/Cl_2 プラズマによる TaC (N-MOS) および O₂/Ar プラズマによ る Ru (P-MOS) [38], Cl₂/Ar プラズマによる TaN および Ar/O_2 プラズマによる Pt[22], $BCl_3/Ar/O_2$ プラズマによ る TaN[39], BCl_3/N_2 プラズマによる TiN/TaN[40], など のエッチングが研究されている. いずれも, 下地 HfO_2 膜に 対する高いエッチング選択性(metal/high-k>1)とともにメ タルパターン側壁の形状異方性を得るため, エッチングケ ミストリの選択と、RF バイアスひいてはイオン入射エネ ルギーの調整に重点が置かれる. 例えば、主たるエッチン グガス (Cl₂, BCl₃ for Ta, Ti) に保護膜形成促進のためのガ ス (HBr, SF₆, O_2 , N_2) を添加して、イオンアシスト反応 と保護膜形成の競合を制御する[36,37,39,40]. また,エッ チングガス (Cl₂ for Ta) と希釈ガス (Ar) との混合比や, RF バイアスパワーの制御も有効である[22]. 詳細は著者 らの以前の解説に譲る[41].

4.6 おわりに

High-kゲートスタックプロセスに必要なhigh-kゲート絶縁膜材料のドライ(プラズマ)エッチング技術の現状と課題について、エッチング反応機構に関する今日の理解とあわせて解説し、さらにメタルゲート電極材料のエッチングにも言及した。サブ 100~10 nm レベルの微細なゲートスタック形成には、形状、寸法精度、選択性、および微視的均一性に関して高精度で、かつ低損傷のゲート電極やゲート絶縁膜の加工技術が不可欠であることはいうまでもない。High-k 絶縁膜およびメタル電極とも、近年多くの研究開発が行われているが、エッチング技術の観点からは、未だエッチング機構の理解が乏しい材料が多く、またいわゆる難エッチング材料も多い。

今後, プラズマエッチングによる metal/high-kゲートスタック構造の高精度微細加工には[35-40], エッチング機構の

表 5 メタル電極材料エッチングにかかわるハロゲン化合物の融 点と沸点[5].

Element	Compound	Melting	Boiling	
		$point(\mathbb{C})$	$point(^{\circ}\mathbb{C})$	
Ti	TiF ₄	284	-	
(Z = 22)	$TiCl_4$	-25	136.45	
	$TiBr_4$	39	230	
Ru	RuO ₄	25.4	40	
(Z = 44)	RuO_2	_	_	
	RuF_5	86.5	227	
	RuF_3	> 600 dec	_	
	RuCl ₃	> 500 dec	_	
	RuBr ₃	> 400 dec	_	
Та	TaF ₅	95.1	229.2	
(Z = 73)	TaCl ₅	216	239.35	
	$TaBr_5$	265	349	
Ir	IrF ₆	44	53	
(Z = 77)	IrF_3	250	_	
	IrCl ₃	763	_	
	$IrBr_3$	_	_	
Pt	PtF ₆	61.3	69.1	
(Z = 78)	PtF_4	600	_	
	$PtCl_4$	327	_	
	PtBr ₄	180	_	

dec: decomposes

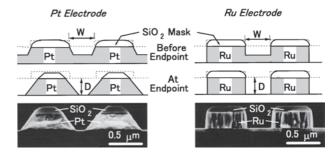


図11 Ar/O_2 プラズマによる Pt エッチング形状(Pt/SiO_2 選択比~6), および O_2/Cl_2 プラズマによる Ru エッチング形状 (Ru/SiO_2 選択比~20) の例[31]. いずれもハードマスク (SiO_2 マスク) 使用.

理解/解明と、その知見に基づく、エッチング反応ガス(揮発性の高いエッチング生成物を得るガスケミストリ)、エッチング装置(再現性・安定性向上のための導電性・非導電性再付着膜への対応)、およびそれらを使いこなすプロセス制御技術(高温エッチング、高速排気、マスク材料など)に関する研究開発が、一層重要であると考える.

謝辞

本章中における著者等の研究の一部は、NEDO/MIRAI プロジェクト、大陽日酸株式会社の援助を受けて行われた.

参考文献

- [1] G.D. Wilk, R.M. Wallace and J.M. Anthony, J. Appl. Phys. **89**, 5243 (2001).
- [2] J.K. Schaeffer et al., J. Vac. Sci. Technol. B 21, 11 (2003).
- [3] Y.-C. Yeo, T.-J. King and C. Hu, J. Appl. Phys. **92**, 7266 (2002).
- [4] H. Kim, J. Vac. Sci. Technol. B 21, 2231 (2003).
- [5] CRC Handbook of Chemistry and Physics, 79th ed., edited

- by D.R. Lide (CRC Press, Boca Raton, Florida, 1998).
- [6] K. Pelhos, V.M. Donnelly, A. Kornbilt, M.L. Green, R.B. Van Dover, L. Manchanda, Y. Hu, M. Morris and E. Bower, J. Vac. Sci. Technol. A 19, 1361 (2001).
- [7] L. Sha, B.-O. Cho and J.P. Chang, J. Vac. Sci. Technol. A 20, 1525 (2002).
- [8] M. Hélot, T. Chevolleau, L. Vallier, O. Joubert, E. Blanquet, A. Pisch, P. Mangiagalli and T. Lill, J. Vac. Sci. Technol. A 24, 30 (2006).
- [9] L. Sha and J.P. Chang, J. Vac. Sci. Technol. A **21**, 1915 (2003).
- [10] L. Sha, R. Puthenkovilakan, Y.-S. Lin and J.P. Chang, J. Vac. Sci. Technol. B 21, 2420 (2003).
- [11] L. Sha and J.P. Chang, J. Vac. Sci. Technol. A 22, 88 (2004).
- [12] E. Sungauer, E. Pargon, X. Melhaoui, R. Ramos, G. Cunge, L. Vallier, O. Joubert and T. Lill, J. Vac. Sci. Technol. B 25, 1640 (2007).
- [13] C. Wang and V.M. Donnelly, J. Vac. Sci. Technol. A **26**, 597 (2008).
- [14] R. Wiese, W. Yan, Y. Zhang, N. Gani, N. Sun, M. Shen and T. Lii, Solid State Technol. 51, 18 (2008).
- [15] S. Norasetthekul, P.Y. Park, K.H. Baik, K.P. Lee, J.H. Shin, B.S. Jeong, V. Shishodia, D.P. Norton and J. Pearton, Appl. Surf. Sci. 187, 75 (2002).
- [16] T. Maeda, H. Ito, R. Mitsuhashi, A. Horiuchi, T. Kawahara, A. Muto, T. Sasaki, K. Torii and H. Kitajima, Jpn. J. Appl. Phys. 43, 1864, (2004).
- [17] J. Chen, W.J. Yoo, Z.Y. Tan, Y. Wang and D.S. H. Chan, J. Vac. Sci. Technol. A **22**, 1552 (2004).
- [18] X. Wang, Y. Liu, X. Xu, S.Fu and Z. Cui, J. Vac. Sci. Technol. A 24, 1067 (2006).
- [19] K. Takahashi, K. Ono and Y. Setsuhara, J. Vac. Sci. Technol. A 23, 1691 (2005).
- [20] K. Takahashi and K Ono, J. Vac. Sci. Technol. A 24, 437 (2006).
- [21] S.D. Park, J.H. Lim, C.K. Oh, H.C. Lee and G.Y. Yeom, Appl. Phys. Lett. **88**, 094107 (2006).
- [22] K. Nakamura, T. Kitagawa, K. Osari, K. Takahashi and K. Ono, Vacuum 80, 761 (2006).
- [23] T. Kitagawa, K. Nakamura, K. Osari, K. Takahashi, K. Ono, M. Oosawa, S. Hasaka and M. Inoue, Jpn. J. Appl. Phys. 45, L297 (2006).
- [24] K. Nakamura, D. Hamada, Y. Ueda, K. Eriguchi and K. Ono, Appl. Phys. Express 2, 016503 (2009).

- [25] Y. Ueda, K. Nakamura, H. Kiyokami, H. Ohta, K. Eriguchi and K. Ono, 61st Gaseous Electronics Conference (61st GEC), Dallas, Texas, Oct. 2008, Paper XF1-2; and also to be prepared for publication.
- [26] C. Wang and V.M. Donnelly, J. Vac. Sci. Technol. B 23, 547 (2005).
- [27] C. Wang and V.M. Donnelly, J. Vac. Sci. Technol. A 24, 42 (2006).
- [28] H. Raaf and N. Schwentner, Appl. Surf. Sci. 174, 13 (2001).
- [29] NIST X-ray Photoelectron Spectroscopy Database, web version, http://srdata.nist.gov/xps
- [30] 柴田俊格, 宫 博信, 国井泰夫, 斧 高一, 井上 實: 大陽日酸技法 **26**, 7 (2007).
- [31] K. Ono, T. Horikawa, T. Shibano, N. Mikami, T. Kuroiwa, T. Kawahara, S. Matsuno, F. Uchikawa, S. Satoh and H. Abe, *Technical Digests of the 1998 International Electron Devices Meeting, San Francisco, Dec. 1998* (IEEE, Piscataway, N.J., 1998) pp. 803-806.
- [32] T. Shibano, K. Nakamura, T. Takenaga and K. Ono, J. Vac. Sci. Technol. A 17, 799 (1999).
- [33] T. Shibano, K. Nakamura and T. Oomori, J. Vac. Sci. Technol. A 16, 502 (1998).
- [34] T. Shibano, T. Takenaga, K. Nakamura and T. Oomori, J. Vac. Sci. Tehnol. A 18, 2080 (2000).
- [35] G.P. Kota, S. Ramalingam, S. Lee, B. Coenegrachts and C. Lee, *Proc. 4th Int. Symp. Dry Process (DPS-2004) Tokyo, Nov. 2004* (IEEJ, Tokyo, 2004), p. 133-138.
- [36] W.S. Hwang, J. Chen, W.J. Yoo and V. Bilznetsov, J. Vac. Sci. Technol. A 23, 964 (2005).
- [37] M.H. Shin, S.-W. Na, N.-E. Lee, T.K. Oh, J. Kim, T. Lee and J. Ahn, Jpn. J. Appl. Phys. 44, 5811 (2005).
- [38] L. Hsu, L.W. Cheng, K.T. Chu, T. Lin, M. Ma, M.C. Yang, J.H. Liao and S.F. Tzou, *Proc. 6th Int. Symp. Dry Process* (DPS-2006), Nagoya, Nov. 2006 (IEEJ, Tokyo, 2006) pp. 12-13.
- [39] M.H. Shin, M.S. Park, N.-E. Lee, J. Kim, C.Y. Kim and J. Ahn, J. Vac. Sci. Technol. A 24, 1373 (2006).
- [40] D. Shamiryan, V. Paraschiv, S. Eslava-Fernandez, M. Demand, M. Baklanov, S. Beckx and W. Boullart, J. Vac. Sci. Technol. B 25, 739 (2007).
- [41] 斧 高一, 江利口浩二:半導体テクノロジー大全 [2007年版] (電子ジャーナル, 東京, 2007) 第 4 編第 4 章第 4 節, pp. 296-301.