Special Topic Article
Development of High Power Terahertz Band Gyrotrons and Their Applications
1. Introduction ... SAIITO Teruo 853
2. Principle of Gyrotron Oscillation TATEMATSUB Yoshinori and SAIITO Teruo 855
3. Study for High Frequency Oscillation of Gyrotron IDEHARA Toshitaka 861
3.1 Development of High Frequency Gyrotron BRATMAN Vladimir 865
3.2 High-Harmonic Subterahertz and Terahertz Gyrodevices IDEHARA Toshitaka, OGAWA Isamu, SAIITO Teruo, TATEMATSUB Yoshinori and MITSUDO Seitaro 868
4. Plasma Diagnostics with High Frequency Gyrotron
4.1 Mode Conversion and Transport of Output Power from Frequency Variable Gyrotron ... OGAWA Isamu and TATEMATSUB Yoshinori 874
4.2 Collective Scattering Measurement Using Gyrotron ... KUBO Shin, TANAKA Kenji, OGAWA Isamu, NISHIURA Masaki and SHIMIZUMA Takashi 877
4.3 Development of High Frequency Gyrotron for Collective Thomson Scattering Diagnostics NOTAKE Takashi, TATEMATSUB Yoshinori and SAIITO Teruo 887
5. Application Studies with High Frequency Gyrotron
5.1 Application to Condensed Matter Physics ... MITSUDO Seitaro, FUJI Yutaka and TODA Mitsuru 891
5.2 Application to Creation of New Material and Ceramic Sintering ... MITSUDO Seitaro, SANO Saburo and SAJI Tasaburo 896
5.3 Application to Life Science ... FUJIWARA Toshimichi 899
5.4 Application to Basic Physics Precise Validation of QED of Constrained System ... ASA Shoji 902
5.5 Development of Irradiation Apparatus with Catheter Transmitting Millimeter and Submillimeter Waves for Living Body ... IDEHARA Toshitaka, OGAWA Isamu and KAMEMAKI Tomohiro 906
5.6 Subterahertz Gyrotron Optimized for X-Ray Detected Electron Magnetic Resonance ... GOULON Joseph, ROGALEV Andrei, WILHELM Fabrice, GOUJON Gérard and IDEHARA Toshitaka 909
6. Summary ... SAIITO Teruo 912

Special Topic Article
Present Status of Studies on Plasma Wall Interaction in Multi-Scale
1. Introduction ... SAKAMOTO Mizuki 917
2. Plasma Wall Interaction in Macro-Scale ... SAKAMOTO Mizuki 918
3. Plasma Wall Interaction in Meso-Scale —Dust Phenomena— ... ASHIKAWA Naoko 924
4. Plasma Wall Interaction in Micro-Scale ... YOSHIDA Naoki and TOKITANI Masayuki 929
5. Multi-Scale Simulation
5.1 Multi-Scale Simulation for Fusion Plasmas ... YAGI Masatoshi 937
5.2 Multi-Scale Modeling of Material’s Behavior during Irradiation ... MORISHITA Kazunori 941

PFR Abstracts ... 948
Information ... 949
Plasma & Fusion Calendar ... 956
Announcement ... 957
List of Newly Arrived Publications, NIFS ... 958
Vol.84 Contents ... 963

Cover
Computer analysis of fusion energy extraction from D–3He experiment in LHD. Discriminating acquisition of 15-MeV protons is possible due to the nonaxisymmetric structure of the magnetic field and the ultra-high energy of the fusion products (acquisition rate: 12 ~ 28%). Poincaré plots of the 15-MeV protons are shown by color-coded dots corresponding to the lifetime of each proton. The small sky blue dots represent magnetic field lines. (Tsuguhiro Watanabe et al., Plasma and Fusion Research Vol.3, 058 (2008) http://www.jspfor.jp/PFR/)