Commentary

Generation and Applications of Terahertz Waves Generated by Femtosecond Lasers HANGYO Masanori, TANI Masahiko, KITAHARA Hideaki and NAGASHIMA Takeshi 731
Bridge between Fusion Plasma and Plasma Processing ... OHNO Noriyasu and TAKAMURA Shuichi 740

Special Topic Article

Prospects of Research on Innovative Confinement Concepts in ITER Era

1. Introduction

1.1 Introductory Remarks ... MASAMUNE Sadao, NAGATA Masayoshi, TAKAHASHI Tsutomu and KOGUCHI Haruhisa 750
1.2 Scientific Development of Nuclear Fusion Research in Terms of High-Beta Self-Organizing Plasmas ... TAKAMURA Shuichi 752

2. Recent Progress in High-Beta Self-Organizing Plasma Research

2.1 Confinement Improvements and New Trends in Field Reversed Configurations (FRC) ... TAKAHASHI Tsutomu 754
2.2 Confinement Improvements and Advancement in Spheromak Research .. NAGATA Masayoshi 760
2.3 Improvements in Performance of Reversed-Field Pinch Plasmas ... MASAMUNE Sadao 766

3. Status of Innovative Confinement Concepts (ICC) Research Program in the USA

3.1 Innovative Confinement Concepts (ICC) Program in Fusion Energy Science WOODRUFF Simon 771
3.2 Activities of the Plasma Science and Innovation Center NELSON Brian A. and JARBOE Thomas R. 775

4. Contribution of Fusion Reactor of High-Beta Self-Organizing Plasma Research

4.1 Contribution to Tokamak Research of Reversed Field Pinches in Europe

4.1.1 The RFX-mod Reversed Field Pinch .. MARTIN Piero 781
4.1.2 Research at EXTRAP T2R in Contribution to Tokamak Programs ... BRUNSELL Per R. 787
4.2 Contribution to ITER of Self-Organizing Plasma Research in Particle Fueling .. RAMAN Roger 790
4.3 Innovative Fusion Reactor Design and Its Impact for Tokamak Reactors .. HOOPER Bickford E. 796
4.3.2 Current Sustainment Scenarios for a Reversed Field Pinch Fusion Reactor SARFF John S. 800

5. Roles of High-Beta Self-Organizing Plasmas in Plasma Science

5.1 Role of MIST in Activities of the Center for Magnetic Self-Organization in Laboratory

and Astrophysical Plasmas (CMSO) ... FIKSEL Gennady 804
5.2 High-Beta Self-Organizing Plasmas in Basic Plasma Sciences

5.2.1 Laboratory Experiments on Astrophysical Plasma Phenomena ... BELLAN Paul M. 808
5.2.2 Dynamo and Reconnection Research ... BROWN Michael 812

6. Summary

6.1 Prospects of High-Beta Self-Organizing Plasmas for Scientific Research .. KATSURAI Makoto 815
6.2 Concluding Remarks .. MASAMUNE Sadao, NAGATA Masayoshi, TAKAHASHI Tsutomu and KOGUCHI Haruhisa 818

Lecture Note

Particle Acceleration Caused by Collisionless Shock Waves

5. Heavy-Ion Acceleration in a Multi-Ion-Species Plasma ... OHSASA Yukiharu 822
6. Positron Acceleration along the Magnetic Field ... OHSASA Yukiharu 828

Contributed Paper

Interactive Three-Dimensional Visualization Software by Virtual Reality Technology

Information .. KAGEYAMA Akira and OHNO Nobuaki 834

Plasma & Fusion Calendar .. 847

Announcement .. 849

Cover

Scientific visualization of magnetic reconnection particle simulation data by CAVE virtual reality system "CompleXkope" at National Institute for Fusion Science. Ions coming from upstream boundary execute a meandering motion (white lines) around the magnetic neutral sheet, and exit through the downstream boundary. The averaged amplitude of the meandering motion corresponds to the width of the ion high-temperature region (color contours in the xy-plane). (Hiroyuki OHTANI et al., Plasma and Fusion Research Vol.3, 054 (2008) http://www.jspfr.or.jp/PFR/)

Published Monthly by
The Japan Society of Plasma Science and Nuclear Fusion Research
3-1-1, Uchihama, Chikusa-ku, Nagoya 464-0075, Japan
Tel 052-735-3185, Fax 052-735-3485, E-mail plasma@jspfr.or.jp, URL http://www.jspfr.or.jp/