付録:トカマクによる核融合開発の概要

1. はじめに

核融合プラントの実現には、1億度程度の温度で十分な 密度のプラズマを生成し、かつそれを保持する必要があ る.そのプラズマからエネルギーが逃げ出していく時間を エネルギー閉じ込め時間という.(注:これは「プラズマが もつ全熱エネルギー/単位時間に失われる熱エネルギー」 で定義されるエネルギー損失の時定数であり、プラズマの 保持継続時間のことではない.)

核融合プラントで十分なエネルギー利得(Q値,核融合 出力と加熱に使うエネルギーの比)を実現するには、1億 度の達成に加え、このエネルギー閉じ込め時間とプラズマ の密度との積(核融合積)が、10²⁰~10²¹秒/m³程度になる 必要があることが知られている.これを実現するための研 究は2つの方式で進められてきた.ひとつは、プラズマの 閉じ込めのために磁場を使うもので、トカマク型が代表的 であるが、そのほかにもヘリカル型、ミラー型、逆転磁場 型などが研究されてきた.もうひとつは、強力な加熱で一 瞬に1億度にして、それが飛び散る前に核融合を起こそう とする方式で、飛び散るのに有限の時間がかかるのが慣性 に起因することから、これを「慣性閉じ込め」と呼ぶ.こ の方式ではいかにして瞬間加熱ができるかが重要で、レー ザー方式が代表的である.

これらの方式のうち,現時点で連続燃焼実験へと進もう としているのは,ITER 計画で採用されているトカマク型 である.レーザー方式も,連続燃焼ではなく単発燃焼では あるが,米,仏,日でそれぞれ点火を目指している.

2. トカマクでの達成パラメータと ITER の目標

本小特集のテーマはトカマクによる実用化に限っている ので、ここでもトカマクを中心に説明する.

プラズマは磁場に拘束されるという事実を利用し、ドー ナツ状に閉じた磁場系でプラズマを保持するのがトカマク 型核融合装置である (Fig.1). この方式ではおよそ 10²⁰ m⁻³程度のプラズマ密度が実現可能であるので、エネル ギー閉じ込め時間を数秒にすることで上記の核融合積条件 を達成できる.トカマク方式によるエネルギー閉じ込め時 間は現時点で1秒程度までは達成している.

Fig.2は、トカマクの研究で実現した温度と核融合積を 示している[1].1990年台の3台の大型トカマク装置(日: JT-60U, 欧:JET, 米:TFTR)によってQ=1程度(Fig. 2中の臨界プラズマ条件)が達成されており、次期装置で は、外部からの加熱を止めても核融合の自己加熱のみで1 億度を維持できる「自己点火条件($Q = \infty$)」か、それに近 い大きなエネルギー利得($Q \gg 10$)を得られる領域を目指 している.次期トカマク実験プラントITERがそのための 装置である.ITER(国際熱核融合実験炉)の熱出力の規模 は50万 kW 程度と中型火力発電プラント並みで、数百秒以 上の連続的な核融合燃焼を人類史上はじめて実現できると

Fig. 2 Plasma performance achieved by tokamak experiments (with the results by LHD herical system, added by author).

考えられている.

3. トカマクの基本構造

先に述べたとおり、トカマクはトーラス型(ドーナツ状) のプラズマを磁場の力で閉じ込めようとするもので、その 概念は Fig.1 に示した.このようなトーラスプラズマが磁 場の力で安定に維持されるには、トーラスに沿った強い磁 場(トロイダル磁場, *B*t)とプラズマの中を流れるプラズマ 電流が作る磁場(ポロイダル磁場, *B*_p)の両方がバランス よく存在している必要がある.Fig.1ではプラズマを取り 囲むトロイダル磁場発生コイルの約半数だけを示した.実 際にはこれ以外にも制御用などのコイルは多数存在する. プラズマ断面は通常は真円ではなく,縦長で少しD形に歪 んだ楕円になる.

プラズマを支える磁場は $B_t \ge B_p$ を合成したもので, そ の磁力線は螺旋状になる.この螺旋のねじれ具合は $B_t \ge B_p$ の比で決まり,この比を安全係数またはq値と呼ぶ.中 央の電流密度が高く周辺でゼロに近い自然な電流分布で は, q値は中心が最小で周辺に向かって単調に増加する.q値の分布形状とプラズマ表面での値はプラズマの安定性の みならず,トカマクの性能を大きく支配するのが知られて いるので重要である.

トカマクではプラズマ中に電流が流れていなければ (*B*_p ができないので)プラズマは安定に存在できない.プラズ マに電流を流すためのもっとも簡単でかつもっとも効率が よい方法は,電磁誘導を用いることである.プラズマリン グがトランスフォーマーの二次巻線となるような形に構成 し,一次巻線側にパルス電流を流せば,プラズマに電磁誘 導で電流が流れる.これは,トカマクの電流生成のもっと も基本的な方法である.また,トカマクが初期に大きな成 功を収めた理由のひとつは,この電流が作るジュール熱に よるオーミック加熱がプラズマの加熱に大変効率的であっ たという事実がある.

しかし,この方法で駆動可能な電流はパルス的であり定 常にはできないので,実用プラントにおいてはこの電磁誘 導による電流駆動法はあまり適さないと考えられている. また,電流によるオーミック加熱にもひとつの限界があ る.プラズマの抵抗値は,温度の-1.5 乗に比例し,高温に なるほど抵抗は下がるので電流で発生するジュール熱は減 る.一方,プラズマから失われるパワーは温度とともに上 昇する.その結果,オーミック加熱で到達可能なプラズマ 温度には上限がある.残念ながらそれは数千万度が限度で あり,核融合に必要な1億度にはオーミック加熱のみでは 到達できないと考えられているのである.

この電流がパルスである問題と加熱が不足する問題とを 解決する方法として,外部からビームや高周波を投入する 方法がある (Fig. 3).

風呂に熱湯を注いで温度を上げるように,高エネルギー の粒子ビームをプラズマに入射することでプラズマの温度 を上げることができる(Fig. 3a).ビーム粒子は,プラズマ の不純物とならないように重水素を用いる(原理的には三 重水素も可).高エネルギービームを作るには,粒子を一度 イオンにして電界で加速するが,イオンのままでは磁場を 横切ってプラズマに入ることができないので,加速後に中 性化し中性原子ビームとして入射する.

中性原子ビームはプラズマ内部での衝突によって電離さ れ、イオン流となってプラズマ内部を運動し、自らは減速 しながらそのエネルギーをプラズマに与える.都合のよい ことに、このイオン流はプラズマ内に電流も誘起するの で、電流駆動も同時に達成できる. この方法によってトカマクでは1億度を超えるプラズマ 温度を達成している.日本原子力研究所のJT-60U装置は, 5.2億度という世界記録を達成した.また,電流もそのほぼ すべてをビーム駆動分(一部は後述の自発電流)に置換す ることに成功している.必要となるビームのエネルギーは 数百keVから数MeVである.現在のところJT-60U用とし て約400keVのビーム入射装置が稼動している.

もうひとつの加熱と電流駆動の方法は,高周波を用いる もので,電子レンジによる食品の加熱に似ている (Fig.3 b).強力な高周波 (電磁波)をプラズマに入射して,プラ ズマ粒子を直接加速 (加熱)する.加速にはプラズマ中に 存在するさまざまな共鳴現象を用いるのが効率がよいが, どのような共鳴を用いるかで周波数は変わり,数+ MHz 帯から百数+ GHz 帯までが用いられうる.位相速度のそ ろった高周波によって電子やイオンを波に乗せて押すこと で,電流の駆動も可能である.実用プラントに向けては, 電子が磁力線に拘束されてその周りを回る周期,あるいは その整数倍に周波数を合わせた電子サイクロトロン共鳴加 熱が考えられており,周波数レンジとしては 100 GHz 程度 である.

4. ITER 以後の課題

上記のような加熱電流駆動法なども併用して,トカマク では前出の Fig.2 で示したように臨界条件まで達成してお り,今後は ITER による自己点火領域,またはそれに近い, 大きなエネルギー利得が得られる領域を目指している.

ところで, Fig.2のダイヤグラム上で見ると, ITER と実 用プラントの距離は実にわずかに見える.しかし,ダイヤ グラムの目標点の達成は,実用化への必要条件に過ぎず, 核融合プラントの実用化に向けての課題は ITER だけです べて解決できるわけではない.

a)電力生成実証のための視点

大規模なエネルギー生成を実証する ITER に続く次の核 融合研究のステップは,発電プラントとしての技術的実証 である.それには,ダイヤグラムに現れる以外のさまざま なパラメータの高性能化とその同時達成が必要である.ま

Fig. 3 Non-inductive current drive. a: Beam injection, b: RF(radio frequency wave) injection.

た,その長時間安定維持が必要になる.ITER では,少なく とも数百秒,最大で数千秒までの実験が考えられている が,実用化にはそれが数ヶ月にならねばいけない.プラズ マの物理としては数百秒と数ヶ月に大きな差はないが,工 学的には大きな違いがある.また,プラント規模の発電の ための工学的課題も残っている.

b)経済性,運用性を含めた実用化の視点

さらに実用プラントとして成立するには、経済性がある 水準を越えなければならないし、運用性、たとえばメンテ ナンスのしやすさ、機器の寿命なども重要である.すなわ ち実用化の観点からは前述 a)の「発電実証」の視点よりさ らに高性能なプラズマが必要であり、同時に材料もさらに 耐久性の高い(特に耐中性子照射)ものが望ましい.リチ ウムを原料とする三重水素の確実な自己増殖性も必須であ る.三重水素は天然にはほとんど存在しないので、その自 己増殖ができなければ、そもそもDT 燃料(D:重水素、 T:三重水素)の核融合プラントは成立し得ない.

以下, ITER 以後のプラントの実現に必要となるいろい ろな性能について, 順にその概略述べる. 詳細は2章以後 を参照されたい.

4.1 プラズマ物理の課題

プラズマ物理に関連する課題は,第3章で詳細に述べら れる.本節では,それらの理解に助けになると思われる基 本な事項を,用語の説明も含めてまとめておくことにす る.

a) 高ベータとその長時間維持

磁場強度には技術的な上限があるので、与えられた磁場 で支えられるプラズマ圧力が高いほど、より高い出力密度 の、すなわち小型でコストがおそらくは安いプラントにな ると思われる.その指標が規格化圧力指標の β_N である. β_N は、プラズマの圧力をトロイダル磁場の圧力($B_t^2/2\mu_0$) で割った値 β_t と、プラズマの小半径*a*、プラズマに流れる 電流 I_p を用いて

$$\beta_{\rm t} = \beta_{\rm N} \frac{I_{\rm P}({\rm MA})}{a({\rm m})B_{\rm t}({\rm T})}$$

のように書けるもので、トカマクプラズマの性能指標のひ とつである. β_N と β_t が違う点には注意されたい.また B_t はプラズマ中心での値を用いる.

Fig.4には現在の装置で達成している β_N 領域 (present region)と, ITER ならびに将来の実用プラント (CREST, ARIES-RS, ARIES-AT)または原型プラントあるいは発電 実証プラント (SSTR) で必要となる β_N を, プラズマ中心 での磁場強度の関数としてプロットしてある[2]. 同時に, そのプラズマ中央で必要な中心磁場の値を達成するための コイルの最大磁場も図上に示した.

ITER で必要とされている領域はすでに達成されている。一方,実用プラントや原型プラント・発電実証プラントには、 $3.5 < \beta_N < 5.5$ の領域が必要であり、その範囲は現在の装置では完全には確認されていない。図でJT-60SCとあるのは、仮にJT-60Uを超伝導装置に改造した場合の

Fig. 4 β_N value required for ITER and future plants.

Fig. 5 β_N and the duration time of plasmas.

目標領域である(最近ではJT-60SC ではなく国内重点化ト カマクと呼ぶ.若干設計も変わったが,目標の β_N 値は同じ である).

実用プラント等に必要なこの $3.5 < \beta_N < 5.5$ という領域 は、物理的意味でもそれ以下とは実現の困難さがかなり異 なっている. Fig.5 に示したように、 $\beta_N > 3.5$ では、無制御 ではある種の不安定性が必ず発生する新しい領域に入る [3].すなわちこれまでの手法の延長上だけではその長時 間維持が達成できない領域である.その安定性の達成には 能動的な安定化手法が実現されるのが条件である.また現 時点で長時間(といっても数十秒)を達成しているのは、 β_N が3.5 以下の領域である.なお、図ではこの範囲でも β_N の増大とともに維持時間が下がっているように見える が、これは物理上の制約よりは、磁場コイルが超伝導では ない、電源の制約で加熱入力が長時間は続けられない、な どの装置の制約によるものが多いと考えるのが正当であり、それらがクリアされる ITER での数百秒の達成に大きな不安が残っているわけではない.

b) 閉じ込め性能(HHファクター)

圧力の指標とは別に、プラズマのエネルギー閉じ込め時間の指標が HH である(H と記載される例もある). プラズ マが大型になればそれに応じてエネルギー閉じ込め時間が 増加するのはわかっているので、時間そのもので評価する よりは、この HH ファクターで性能を評価しておくほうが 異なる装置の性能を比較するには役に立つ. この HH とい う数字は、エネルギー閉じ込め時間をそのスケーリング則 に基づいて規格化した数字である. 閉じ込め時間のスケー リング則はよく確立されており、Fig.6のように多くの装 置の結果を再現することが可能である[4].

c)密度の制約

トカマクで達成可能な密度の上限をグリーンワルド密度 (*n*_{GW})といい、プラズマの平均電子密度(*n*_e)をこの *n*_{GW}で割った値(つまり上限値との比)をグリーンワルド 指数という.このグリーンワルド密度上限は絶対超えられ ないというものではないが、これまでの実験では、それを 超えることは難しく、あるいは、超えると他の閉じ込め性 能が大きく劣化するなどの影響が出やすいことが知られて いる.核融合出力は密度の2乗に比例して増大する.しか し、多くの場合、このグリーンワルド密度による制限が運 転パラメータの設計制約となってしまうので、*n*_{GW} は重要 な性能指標である.

d) 熱負荷の制御

ITER でも実用プラントでも,核融合で発生するエネル ギーの80%は中性子で発生し,これはそのままブランケッ トに吸収される.残る20%は荷電粒子(アルファ粒子)で 発生し,多くはプラズマに一旦エネルギーが吸収され,そ のエネルギーは熱流束としてプラズマに対向する第一壁ま たはプラズマ下部(あるいは上下両方)に設置された熱処

Fig. 6 Energy confinement scaling.

理装置「ダイバータ」に流入する.熱は,磁力線を横切る 方向(第一壁方向)より磁力線に沿う方向(ダイバータ方 向)に流れやすいので,なんの対策もなければプラズマか らの熱流束の大部分はダイバータに流入する.そのような 条件ではダイバータ表面の材料消耗が大きく,過大な熱の 処理にも困難を伴うと考えられている.ダイバータへの流 入熱量を制御する方法としては,その流れの途中で不純物 イオン(故意に添加)からの放射光によって第一壁にエネ ルギーを拡散させることが想定されている.この制御は基 礎実験は存在するが,燃焼プラズマの制御を行ったことは 一度もないわけで,その意味で,これに関しては ITER に 必要な特性はまだ達成されていない.すなわち,実際に ITER を用いて開発せざるを得ない項目となっている.

e) 定常電流駆動

実用プラントの定常運転には、電磁誘導を用いない電流 駆動法(非誘導電流駆動)の達成が必要であることは先に 述べた(本付録第3節).誘導電流を非誘導電流にすべて置 き換えることは実験的にすでに成功している.また、ビー ム加速電圧の上昇、プラズマ温度の上昇とともに、その駆 動効率も理論に沿って上昇しており、計画とおりに1MeV のビームができれば、ITERの目標の電流駆動効率は達成 できると予想されている.

f)自発電流割合

実は、トカマクプラズマの維持に必要な電流のすべてを 非誘導電流駆動で流そうとすると、その効率が理論的に理 想の数字になってもなお、非常に大きなパワーを必要と し、実用プラントとしては電流駆動に発電電力の半分近く も使うような状態になるとされている.しかし、幸いなこ とに、トカマクプラズマは高温・高圧になると自発的に電 流を駆動することが知られている.たとえばこの自発電流 割合が80%に達すれば、非誘導方式で駆動すべき電流は残 り20% (すなわち1/5)に減る.したがって、十分に高い自 発電流割合の達成は、トカマクの実用化には重要な項目に なる.現在までに JT-60U では ITER の要求を大きく超え、 実用プラントに必要なレベルに近い75%程度の割合を達成 している.

4.2 炉工学での課題

上記では、主にプラズマの視点から現在の達成状況を述べたが、次に炉工学の観点で考えてみる. 炉工学上の課題は、第4章において詳細に述べられるが、本節では、その理解の助けになるように、重大な課題のみについて概要を述べておくことにする.

ITER はすでに製作しようとしている装置であって,若干の開発要素はあるものの,炉工学上で実現が不明確な点はないと考えてよい.しかし,原型プラント以後についてはまだかなり残された問題がある.

原型プラント以後のもっとも重要な工学課題は,発電ブ ランケットの開発であろう.高効率で発電するのと同時 に,燃料である三重水素を自己増殖しなければならない. この増殖はブランケット内において原料のリチウムに核融 合で発生した中性子を吸収させることで実現できる.発電 ブランケットの基本構造はITER で試験しながら開発され ることになるが、プラント規模での試験運用は原型プラン トの運用の中で実施することになろう.原型プラント運用 の最終段階ではブランケット交換を数年に一回程度に収め られるように中性子照射に対しても十分な寿命を持ってい るものを開発できなければ次に進むことができない.その 寿命は、構造材料の開発と深く関係する.

ブランケットなどの構造材料については、やはり ITER での基礎試験と IFMIF(国際協力で計画中の材料照射装 置)の完成を待っての照射試験をせざるを得ないものであ り、今後の大きな課題になっている.現時点では低放射化 フェライト鋼が原型プラント用構造材料の第一候補である が、さらに先進的な材料、たとえばバナジウム合金である とかシリコンカーバイド(SiC)のセラミックス系コンポ ジット材などの開発も並行して進められている.

磁場コイルは, ITER の最大磁場 13 T 程度に対して, 原型プラントでは16 T程度が要求されると思われる.線材そのものも, ITER の Nb₃Sn とは違う Nb₃Al を用いる可能性が高く,まだ多くの開発を必要としている.

中性子負荷下でのダイバータ技術は ITER でしか開発で きない項目であり, 現時点ではまだ十分な開発にはいたっ ていないといえる. ダイバータ表面材料の寿命も十分に (できればブランケットと同程度に)長くできる必要がある が, どの程度の熱と粒子が流れてくるかで設計ポイントが 変化するので, 熱・粒子制御の物理と切り離しては考えら れず, ITER で総合的に開発しなければならない重大な項 目である.

5. まとめ

核融合開発は着実にパラメータを向上してきている.中 でもいわゆる核融合積では10年に1桁の向上を続けてき た.そして次のステップとしてのITERによる高利得連続 燃焼は高い確率で成功すると思われる.しかし,それ以後 の発電実証や実用化には,

- 1) さらなる高性能プラズマパラメータの同時達成
- 2) その完全定常化と安定な制御
- 3)材料を含めた実用プラントとしての運用に耐える工 学技術の開発

などの多くの課題が残されている.1),2)はITERに よってかなり進展するが,それだけではおそらく不十分で あり,目標を絞ったサテライト装置での並行した開発が必 要であろう.3)についても,ITERである程度の開発はで きると思われるが,ITERでは中性子照射の量も稼働時間 も限られたものであり,IFMIFなどを併用しつつできる限 り開発を進め,最終的には原型プラント(発電実証プラン ト)そのもので開発を完成することになる.

(岡野邦彦)

参考文献

- [1] 日本原子力研究所資料「ITER-核融合実現への道-」.
- [2] S. Ishida et al., Nucl. Fusion 43, 606 (2003).
- [3] 原子力委員会核融合開発戦略検討分科会資料検第14-1-2号による。
- [4] 原子力委員会核融合開発戦略検討分科会,核融合エネ ルギーの技術的実現性・計画の拡がりと裾野としての 基礎研究に関する報告書,平成12年5月.