

高速点火核融合の展開

三間 圀興,田中和夫,宮永憲明,兒玉了祐,長友英夫, 城崎 知至,北川米喜,西村博明,坂上仁志¹⁾,田口 俊弘²⁾ (大阪大学レーザーエネルギー学研究センター,¹⁾兵庫県立大学,²⁾摂南大学)

New Frontier of Fast Ignition Laser Fusion

MIMA Kunioki, TANAKA Kazuo A., MIYANAGA Noriaki, KODAMA Ryosuke, NAGATOMO Hideo, JHOZAKI Tomohiro, KITAGAWA Yoneyoshi, NISHIMURA Hiroaki, SAKAGAMI Hitoshi¹⁾ and TAGUCHI Toshihiro²⁾ Institute of Laser Engineering Osaka, University, Suita 565-0871, Japan

> ¹⁾University of Hyogo,Himeji 671-2201, Japan ²⁾Setsunan University, Neyagawa 572-0071, Japan (Received 4 November 2004 / Revised 15 March 2005)

Fast ignition is a new scheme in laser fusion. This scheme is opened up by the development of ultra high intensity laser technology. By injecting a peta watt laser into an imploded plasma, it is demonstrated that the imploded plasma is efficiently heated up and the neutron yield increased by a factor 100 - 1,000. According to these progresses of fast ignition research, the proof of principle experiment is starting.

Keywords:

fast ignition, peta watt laser, relativistic plasma, ultra short pulse laser, hot spark, implosion, weibel instability, nuclear fusion

1. 高速点火とは

大阪大学や米国[1-4]において、レーザー爆縮により超 高密度プラズマの発生に成功して以来、レーザー核融合は 新しい研究段階に入った. すなわち, 1億度に達する高温 高密度の点火スパークを形成し,核融合点火を実現するこ とが次のマイルストーンとなった. 従来のホットスパーク 点火方式では、十分に球対称性の良い爆縮を実現し、球心 衝撃波により爆縮プラズマの中心にホットスパークを形成 する[5]. この方式は中心点火と呼ばれ、Fig.1の上段にそ の過程が示されている.この方式では、燃料ペレット爆縮 初期のアブレーション面と最終段階のホットスパークとそ の周辺の低温高密度プラズマの界面の流体力学的不安定性 をいかに確保するかが最大の課題である. それぞれの面は 加速時とスターグネーション時にレイリー・テイラー不安 定性を起こし界面の擾乱が成長する. このレイリー・テイ ラー不安定性は爆縮過程の"ユニバーサル不安定性"であ ることから、プラズマの球対称性を実現するには、成長率 を抑制するような爆縮のシナリオを選択し、かつ外部から の擾乱を最小にする必要がある. すなわち、ペレットの構 造や表面の極めて高い一様性や球対称性を確保するととも に、高い一様性のレーザー照射が要求される.

このような困難を克服する新しい点火方式が山中龍彦, バゾフ,タバック[6-8]により1980年代から1990年代前半 corresponding author's e-mail: mima@ile.osaka-u.ac.jp にかけて提案された. 1995年以来,タバックの提案の実現 を目指して,実験と理論の両面から研究が進められてい る.この方式は,Fig.1下部に示すように爆縮により作られ る高密度プラズマの一部を外部から瞬間的に加熱してホッ トスパークを作ることから,高速点火方式(Fast Ignition) と呼ばれる.

高速点火では、爆縮を制御してホットスパークを形成す る必要がないことより、スタグネーション時のレイリー・ テイラー不安定性を伴わない.そのため、爆縮の一様性、 球対称性を確保するための条件が緩和される.しかし、超 高強度レーザーによる超高密度の爆縮プラズマを瞬間的に

Fig. 1 Central ignition and fast ignition processes.

Fig. 2 Comparison of the central ignition isobaric core plasma structure (a) and the fast ignition isochoric core plasma structure (b).

加熱することが新しい研究課題となる.

中心点火(a)と高速点火(b)の爆縮プラズマの構造を比較 すると Fig.2 のようになる. 中心点火では, 温度が T_h の ホットスパークと温度Tcの主燃料部が等圧であり、中心点 火のホットスパークの密度 Pch は主燃料部の密度 Pc に対し 大きくても $\rho_c T_c/T_h \approx \rho_c/5$ 程度となる. 一方高速点火では 流体力学的な緩和時間よりも短時間にホットスパークを加 熱するため,近似的にホットスパークの密度 Pft は主燃料 の密度に等しい. α粒子加熱による核燃焼の点火には, ホットスパークの面密度 $\rho_{ch}r_{ch}$ および $\rho_{fh}r_{fh}$ が0.4 g/cm² 以上にすることが要求される. このため中心点火でのホッ トスパークの半径 rch は高速点火のホットスパークの半径 r_{fh}の5倍以上となる.したがって,主燃料の密度が重水素 と三重水素を混合した固体の 1,000 倍 (約 200 g/cm³) とす れば $r_{\rm fh} \cong 20 \,\mu{\rm m}, r_{\rm ch} \cong 100 \,\mu{\rm m}$ である. さらに, 核融合燃 焼率が20%以上となることを要求すると、主燃料の外半径 は中心点火の場合には、*r*_{cc} ≅ *r*_{ch} + 100 µm ≈ 200 µm とな り, 高速点火場合には, $r_{\rm fc} = 100 \,\mu {\rm m}$ となる. したがって, 高速点火プラズマのサイズは、中心点火プラズマのサイズ の約半分, すなわち, 高速点火では体積が1/8になり, 同 じ核融合燃焼率を中心点火の1/8のレーザーエネルギーで 達成できることになる. Fig.3の点火および利得カーブが 高速点火ではレーザーエネルギーの小さい方に1桁近く移 動しているのは以上のような理由による. このことは、点 火実証実験や核融合実験炉を中心点火よりはるかに安価に 研究開発できることを意味している.

2. ペタワットレーザーと相対論的レーザープラ ズマ相互作用

Atzeni [9]らの評価によると,高速点火のホットスパークの半径は,密度が 300 g/cm³のとき 20 µm であることから,流体力学的な緩和時間, r_{fh}/4Cs (Cs は音速)は 10 ps 程度である.したがって,加熱レーザーパルス幅は 10 ps 以下となる.温度10 keVのホットスパークの全内部エネルギーは最小でも 10 kJ であり,加熱レーザーのエネルギーが内部エネルギーに変換される割合を 1/5 程度とすれば,加熱レーザーのパルスエネルギーは 50 kJ,ピーク出力は

Fig. 3 Laser energy dependents of fusion gains for fast ignition and central ignition.

 5×10^{15} W(5 PetaWatt)となる.

ペタワットレーザーが現実のものになったのはFig.4の ように1990年代後半になってからである.100 TW を超え る最初のレーザーは1995年に稼動を開始したローレンスリ バモア研究所のペタワットレーザーであり,その後,大阪 大学(2001年)日本原子力研究所(2002年)ラザフォード 研究所(米)(2003年)等で実験に用いられるようになった. 現在,パルスエネルギーが数kJ以上の超ペタワットレー ザーの建設が大阪大学[10],ロチェスター大学(米)[11], CESTA(仏)[12]で進められており,点火に必要なパルス エネルギーに近いペタワットレーザー加熱の実験がまもな く開始される.加熱レーザー技術の特徴は大口径でピコ秒 の多数のレーザービームを位相同期して集光することであ る.この技術は1kJ以上のペタワットレーザーを実現する ための新技術であり,超高エネルギー密度科学の推進にも 寄与する.

加熱レーザーの集光強度は上記の例では 3×10^{20} W/cm² に達する.この時の電子の振動エネルギーを $(\gamma - 1)mc^2$ とすると、相対論係数は $\gamma = \sqrt{1 + (I_L/2.4 \times 10^{18} \text{ W/cm^2})}$ であり振動エネルギーは電子の静止エネルギーより大きくなる.ここで、 I_L はレーザー集光強度であり、 mc^2 は電子の

Fig. 4 Short pulse ultra-high intensity laser developments.

静止エネルギーである.実際に,平均的な電子の振動エネ ルギーは3×10²⁰ W/cm² では,5 MeV に達する.実験で得 られた典型的な電子のエネルギースペクトラムを Fig.5 に 示す.ターゲット面上での照射強度が一様でなく,かつ レーザー強度は時間的に変動するため単純に上記の評価に 従うものではないが,エネルギーの高い部分の電子のエネ ルギースペクトルはほぼ,レーザーピーク強度で評価した 上記の値となる.

大量の相対論的な電子を発生するレーザーの吸収過程に は, underdense plasma で起る誘導ラマン散乱や変調不安 定[13]およびストキャスティック加熱[14]によるものと, 臨界密度の近傍や4倍の臨界密度の近傍で起る共鳴吸収お よび相対論的な Wave breaking や真空加熱がある.一般 に, underdense plasma 中で発生する電子はより硬いスペ クトルを持つ. 高速点火に関係するような超高強度では, レーザーの屈折率は相対論効果や電子密度の変調のため レーザー強度に強く依存する. その結果, レーザー伝播方 向に対し縦方向にも横方向にも非常に強いレーザー強度の 変調が起り、電磁的乱流状態になり、様々な波と粒子の相 互作用が起る. その結果,加速された電子は熱的なエネル ギー分布を示すことになる[15].また、光から電子へのエ ネルギー変換では、運動量も保存されるためレーザーの伝 播方向に指向性を持つ電子の流れが発生し、強い準静的磁 界が発生する.また、準静的磁界は電子の運動量分布の非 等方性に伴う Weibel Instability の結果としても誘起され る.これらの磁界は、レーザーの吸収領域から高密度爆縮 プラズマまでの電子のエネルギー輸送に様々な影響を与え る[16,17]. Underdense plasma中のレーザーの自己変調と 準静的磁界の発生は、シンクロトロン加速[18]やストキャ スティック加熱により高エネルギー電子を発生し、強い レーザーの吸収を起す.ストキャスティック加熱ではレー ザー伝播方向のコヒーレントな加速時間がレーザー強度の 1/2 乗に比例するため、結果として加熱エネルギーは振動 エネルギーのように $\sqrt{I_L}$ でなく、 I_L に比例し、より高いエ ネルギーの電子が発生する.非常に強い密度変調やコーン ターゲットのように固体表面と直接レーザーが相互作用す

Fig. 5 High energy spectra in ultra-intense laser plasmas (After K.A.Tanaka, ref. 20).

る場合には、臨界密度近傍でレーザーの振幅が急激に変化 することで、縦方向の電子の振動が非線形になり、断熱性 を失う結果、強い吸収が起る.これは、Brunnel Absorptoin [19]とか、Voccum Heatingと呼ばれる.超高強度レーザー プラズマ実験で、3×10¹⁸~10¹⁹ W/cm²の照射強度に対し て Fig.5 のような電子のエネルギースペクトルが得られて いる.

Underdense プラズマのスケール長は大規模爆縮では1 mmにも達するため、直接ペタワットレーザーを入射する 場合にはホールボーリング[15]により、レーザーの吸収点 をできる限り爆縮コアプラズマに近づける必要がある. さ もなければ、大阪大学の発明による高Z物質でできたコー ン[20-22]により、レーザー光をガイドする必要がある. レーザーの光圧は吸収率を η_a としたとき, $(2-\eta_a)I_L/c$ であ り、3×10²⁰ W/cm²の照射強度では、150 Gbar に達する.プ ラズマの温度を $\left[\sqrt{1+I_{\rm L}/(2.4\times10^{18}\,{\rm W/cm}^2)}-1\right]mc^2$ とすれ ば、 圧力のバランスで決まる密度は 2.5×10²² / cm³ となり、 臨界密度の20倍程度にまでレーザー光は侵入すると予測さ れる.一方,上記電子温度の DT プラズマの音速 1.5×10⁹ cm/sec でレーザーが侵入するとして,600 µm の侵入に40 ps かかり, 必要なレーザーエネルギーはホール直径を 20 μm として 40 kJ となる. 実際には, ホールボーリングによ り低い強度のレーザーを用いることが考えられる. 例え ば、10¹⁹ W/cm² では、光圧は3 Gbar で、臨界密度の3 倍ま で,音速5×10⁸ cm/sec で侵入し,パルス幅 120 ps のプレ パルスとして, 侵入長は600 μm となる. このときの消費エ ネルギーは4kJとなる.以上のような簡単な評価の1例か らも推測できるように、ホールボーリングによるコアプラ ズマの加熱には相対論的なレーザープラズマ相互作用の総 合的な理解が不可欠である.

これに対し、コーンガイド[20-22]の場合には固体表面 とレーザーが直接相互作用するため、関連するレーザープ ラズマ相互作用はより簡単である.

3. 高速点火の条件とスケール則

Fig.6のようなジオメトリーに対し,(a)等圧ホットス パーク(中心点火)と(b)等密度ホットスパーク(高速点火) に関する点火条件が2次元のシミュレーションで調べられ ている.いずれの場合にも,スパークができたとしてその 後の核燃焼をシミュレーションしたものである.その結果 を面密度ρRと温度Tに対しまとめたのがFig.7である.点 火する場合と点火しなかった場合が白丸(三角及び四角)と 黒丸(三角及び四角)で示されている.等圧ホットスパー

Fig. 6 Structures of central hot spark and off-center hot spark.

クで中心点火の場合には、高密度の主燃料で取り囲まれて おり、かつ圧力平衡が初期には保たれるため、プラズマの 膨張によるエネルギー損失が抑制される.そのため、点火 に必要な ρR は圧力平衡のない高速点火に比べ小さくなっ ている.すなわち、温度が10 keV前後では、核融合反応率、 すなわち α 加熱率がプラズマ体積; $V \sim R^3$ 、プラズマ密 度; ρ 、核融合反応速度; $\langle \sigma v \rangle \sim T^2$ で、 $V\rho^2 \langle \sigma v \rangle \sim AR^3 \rho^2 T^2$ に比例している.一方、エネルギーロスはX線輻射 $BR^3 \rho^2 T^{1/2}$ と電子熱伝導が支配しておりホットスパークの 表面積をS として SpT^{3/2}に比例する.このような比例則と 燃焼シミュレーションより、点火条件はほぼ、

 $(\rho R [g/cm^{2}])^{2} T [keV] (1 - (4 keV/T))^{2} = 0.04$

となる.一方,等密度のホットスパーク(高速点火)では, 膨張によるエネルギーロス; *SρT* が支配し,α粒子加熱と バランスすることから,10 keV 前後では,

 $(\rho R)^3 T [(g/cm^2)^3 \cdot keV] = 1.0$

が点火条件となる[23]. 例えば, T = 10 keVで主燃料の密度が 300 g/cm³のとき,中心点火のホットスパークの密度は 30 g/cm³で半径が 0.004 cm になるのに対し,高速点火では密度 300 g/cm³で半径が 0.0015 cm となる.すなわち,高速点火のホットスパークのエネルギーは中心点火の約 1/2 になる.

より現実的な高速点火の条件は S. Atzeni [9] らによって 提示された. Fig. 8 に示すような円柱対称な領域が有限な パルス幅で加熱される時の点火条件が調べられた. その結 果から点火に関するスケーリングが以下のように求められ ている.

$$Eg = 140 \{\rho / (100 \text{g/cc})\}^{-1.85} \text{kJ}$$
(4)

 $Pg = 2.6\{\rho/(100 \,\text{g/cc})\}^{-1.0} \,\text{PW}$ (5)

 $Ig = 2.4 \times 10^{19} \{\rho / (100 \text{g/cc})\}^{0.95} \text{W/cm}^2$ (6)

$$R = 60 \{ \rho / (100 \text{g/cc}) \}^{-0.975} \, \mu \text{m}$$
(7)

Fig. 8 Hot spark - core plasma geometry.

ここで,加熱ビームの阻止長は 0.6 g/cm² に固定されてい る.ここで, *Eg*, *Pg*, *Ig*, *R* はそれぞれ加熱ビームのエネ ルギー,パワー,強度,および加熱領域の半径である.加 熱ビームの阻止長が 0.5 g/cm²~1.0 g/cm²の間では 点火 に必要なエネルギーが変化しないことが確認されている.

このスケーリングに従うと、コアプラズマの密度が固体 密度の 1,500 倍 (300 g/cm³)のとき、ホットスパークの半 径は 20 µm でビームエネルギーと強度は 16 kJ, 7×10¹⁹ W/cm²となる.たとえば、レーザーエネルギーと照射強度 は結合効率を30%としたとき、約 50 kJ, 2×10²⁰ W/cm² になる.このような点火条件が実現可能かどうかは、爆縮 プラズマにどのような形でペタワットレーザーのエネル ギーが伝達されたかで決まる.すなわち、前節で記述した 相対論的レーザープラズマ相互作用とともに、相対論電子 や高エネルギーイオンオ伝播や高密度プラズマ中での緩和 過程の物理によって決定されるものである.次節以下で最 近の実験結果と理論シミュレーション研究の現状を紹介す る.

4. 爆縮プラズマの加熱実験とシミュレーション による解析

爆縮プラズマに超高強度レーザーを入射することで高速 点火核融合の proof of principle を目指す実験が大阪大学で 実施された. 直接,爆縮プラズマにペタワットレーザーを 入射した場合にはコロナプラズマ中で非常に強い相互作用 が起きる結果,エネルギーが 10 MeV に達する高エネル ギー電子を大量に発生させるとともに高速イオンが発生す る.電子による高密度プラズマの加熱は高エネルギー電子 の発生領域がコア - プラズマから遠いことおよび,そのエ ネルギーが高すぎることから効果的でなかった.一方,高 エネルギーイオンは高密度プラズマと強く相互作用し中性 子の発生の増加が観測された[24].その後,これら困難を 克服するアイデアとしてコーンターゲットが発明された.

実際に 0.5~0.8 ペタワットのレーザーにより, コーン形 状のレーザー導波路を用いることで爆縮プラズマが加熱さ れることを示したものである.実験に用いられたターゲッ トの写真およびD-D核融合の2.45 MeVの中性子のエネル ギースペクトルの分布を Fig. 9(a)に示す.中性子のエネル ギースペクトルの分布は加熱されたプラズマ温度が 1 keV 近くに達したことを示している.ペタワットレーザーの入 射により,核融合反応数が1,000倍にも増加することが明 らかにされた.ペタワットレーザーエネルギーから高密度 プラズマの熱エネルギーへの結合効果を15%および30%と した時の予測値が一点鎖線及び実線で書き込まれており, 実験でレーザー加熱効果が25%近くに達していることを Fig.9(b)は示している[21].

コーンターゲットでのもう一つの研究課題は非球対称な 爆縮でいかに高密度を達成するかである.コーンを挿入し たプラスチックシェルターゲットの爆縮実験が大阪大学,

Fig. 9(a) Cone shell target and neutron spectrum.

Fig. 9(b) Neutron yield enhancement by short pulse laser heating.

Fig. 10 Fusion gain prediction for FIREX project with Fokker Planck simulation of heat deposition.

ロチェスター大学等で進められ[25],関連するシミュレー ションによる解析[26]が進んでいる.その結果では、中心 にできる高温部が排除されるため球対称爆縮よも高い平均 密度を達成ができることが確認された.

これらの実験結果を解析し次期計画の策定のデータベー スとするため、現在統合シミュレーションコードが開発さ れている.詳細は計算機シミュレーションの解説[26]を参 照していただきたい.シミュレーション予測では、コーン での高エネルギー電子群へのエネルギー付与が40%と仮定 し、電子のエネルギースペクトルの主要成分の実効温度が 500 keV の場合には、フォッカー・プランクシミュレー ションにより 10 kJ/10 ps の加熱レーザーパルスをコーン シェルの爆縮プラズマに入射することでイオン温度5 keV になると予測している.加熱エネルギーと核融合利得およ び高エネルギー電子のスペクトルに対する核融合利得の依 存性を Fig. 10 に示す.この予測を保証するためには、(1)相 対論電子が不均一プラズマ中で自発磁場等による自己組織

Fig. 11 Present status of Laser for Fusion Experiment (LFEX).

Fig. 12 Laser fusion plasma parameter development.

化でエネルギーの発散がないこと,(2)電子のエネルギース ペクトルが爆縮コアの周辺プラズマと電子ビームとの相互 作用により電磁的2流体不安定性等の過程を経てソフト化 すること,が期待されている.これらの非線形過程に関し 多くの研究結果が報告されているがその制御性については 今後の重要な研究課題である.

上記の予測を確認するため、点火等価プラズマの発生を 目指すプロジェクト;FIREX-I (Fast Ignition Realization Experiment)が、2003年より大阪大学により開始されてい る.このプロジェクトでは、Fig.10に示すように、核融合 利得が0.1以上になると予測している.また、FIREX-Iの結 果をもとにして、高速点火による核融合燃焼の点火実証を 目指してFIREX-IIが計画されている.この計画では、爆縮 レーザーとして波長0.35 µm、エネルギー50 kJ/3 nsを用い て、0.7 g/cm²を達成し、50 kJ/10 psのペタワットレーザー で加熱する計画である.核融合利得10を目指している.現 在、10 kJ/10 ps のレーザーの建設が進んでおり、2007年 末までには実験が開始される見込みである[10].このレー ザーの増幅部は Fig.11 に示すように既に完成している.

FIREX プロジェクトが目標を達成した後には, Fig. 12 に示す高利得燃焼実験と高平均出力実証に向けた研究開発 を進めることになる.

参考文献

- [1] J. Lindle, *Inertial Confinement Fusion* (New York Springer 1998).
- [2] E.M. Campbel et al., Appl. Phys. Lett. 30, 12 (1980).
- [3] H. Azechi et al., Laser Part. Beams, 9, 193 (1991).
- [4] R.L. McCrory *et al.*, Plasma Phys. Control. Nucl. Fusion Res. 3, 17 (1988).
- [5] J. Nuckolls et al., Nature 239, 139 (1972).
- [6] T. Yamanaka, 大阪大学レーザー核融合研究センター, 内部資料(1985).

- [7] N.G. Basov et al., J. Soviet Laser Research 13, 396 (1992).
- [8] M. Tabak et al., Phys. Plasmas 1, 1626 (1994).
- [9] S. Atzeni, Phys. Plasmas 7, 3316 (1999).
- [10] N. Miyanaga, et al., Proceedings of IFSA 2003, Edited by B.A. Hammel, D.D. Meyerhofer, J. Meyer-ter-Vehn, H. Azechi, ANS Order No.: 700313, p.507ThF1.1 (2003).
- R. McCRory *et al.*, *Proceedings of IFSA 2003*, Edited by B.
 A. Hammel, D.D. Meyerhofer, J. Meyer-ter-Vehn, H.
 Azechi, ANS Order No.:700313, p.5, MonP1 (2004).
- [12] J. Tassart *et al.*, *Proceedings of IFSA 2003*, Edited by B.A. Hammel, D.D. Meyerhofer, J.Meyer-ter-Vehn, H.Azechi, ANS Order No.:700313, p.10, MonP3 (2004).
- [13] Y. Sentoku, K. Mima et al., Phys. Plasmas (2004).
- [14] Z.-M. Sheng, K. Mima, Y. Sentoku *et al.*, Phys. Rev. Lett. 88, 055004 (2002).
- [15] K. Tanaka *et al.*, Phys. Plasmas 7, 2014 (2000); R. Kodama *et al.*, Phys. Rev. Lett. 77, 4906 (1996)
- [16] M. Honda, J. Meyer-ter-Vehn, Phys. Rev. Lett.
- [17] Y. Sentoku, K. Mima *et al.*, Phys. Rev. Lett. **90**, 155001 (2003).
- [18] A. Pukov, Phys. Rev. Lett. 86, 3526 (2001).
- [19] F. Brunel, Phys. Rev. Lett. 59, 52 (1987).
- [20] R. Kodama, P. Norreys and K. Mima, Nature **412**, 798 (2001).
- [21] R. Kodama et al., Nature 418, 993 (2002).
- [22] Y. Sentoku, K. Mima, R. Kodama *et al.*, Phys. Plasmas (2004).
- [23] A. Mahady, H. Takabe and K. Mima, Nucl. Fusion 39, 467 (1999).
- [24] Y. Kitagawa, Phys. Plasmas 9, 2202 (2002).
- [25] K.A. Tanaka *et al.*, Phys. Plasmas **10**, 1925 (2003), H. Shiraga *et al.*, *Proceedings of IFSA 2003*, Edited by B.A. Hammel, D.D. Meyerhofer, J. Meyer-ter-Vehn, H. Azechi, ANS Order No.:700313, p.115 (2004) WP3.4.
- [26] H. Sakagami *et al.*, Jpn. Soc. Plasma and Thermonuclear Fusion Res.