JOURNAL OF PLASMA AND FUSION RESEARCH

The Journal of the Japan Society of Plasma Science and Nuclear Fusion Research

Vol. 80, No.11, November 2004

Rapid Communications	
A Comparison between Divertor Heat Loads in ELMy and HRS H-Modes on JFT-2M	
KAWASHIMA Hisato, UEHARA Kazuya, NISHINO Nobuhiro, KAMIYA Kensaku,	
TSUZUKI Kazuhiro, MOHAMMAD Bakhtiari, NAGASHIMA Yoshihiko,	
OGAWA Hiroaki, HOSHINO Katsumichi, SUZUKI Sadaaki and KUSAMA Yoshinori	907
Commentary	
Numerical Simulation and Technology Computer-Aided Design of Plasma Processing	
for the Fabrication of Semiconductor Microelectronic Devices	909
Special Topic Article	
Prospect of Spherical Tokamak towards a Power Reactor	
Challenge towards the Lowest Aspect Ratio Tokamak	
1. Introduction	040
NAGAYAMA Yoshio and MAEKAWA Takashi	919
2. How High is the Beta Limit for STS?	024
2.1 where is the Upper Limit for the High-Beta ST Operation?	921
2.2 Can Relaxation Events and Stability be Problems?	924
3. Is high Commenter Compatible with high Beta?	020
3.1 How Good a Confinement has been Achieved?	928
5.2 Commentent of Alpha Particles in a Low Aspect ratio Tokamak reactor	021
4 Is an Operating Second for CS Less Current Party Line Stady Visite Purping Second ACKI Takayuki	951
4. Is an Operation Scelario to CS-Less Current Ramp-Op to Steady-State Burning Peasible?	
4.113 Current Rampop without a Center Solehold + Ossible MittaRAL Osamu ONO Yasushi and TAKASE Yuichi	025
4.2 Stady State Operation of High Bat / Low Aspect Patio Tokamak Pacetor with Bootstran Current	900
4.2 Steady-State Operation of High Deta / Low Aspect Natio Tokamak Reactor with Doustrap Senico KII Saio	9/10
5 Can We Obtain the Realistic Power Reactor in the ST Approach?	740
51 Feasible Approach to the Power Reactor Concept NISHIO Satoshi	944
52 Characteristics and Issues of Highly-Flongated Low Aspect Ratio Tokamak Equilibrium SHINYA Kichiro	949
5.3 Neutron Shielding and Blanket Neutronics Design	5.5
YAMAUCHI Michinori, NISHITANI Takeo and NISHIO Satoshi	952
5.4 Divertor Power Handling in a Low Aspect Ratio Tokamak Reactor	
SAKURAI Shinji, TOBITA Kenji and NISHIO Satoshi	955
5.5 Low Aspect Ratio Tokamak Reactor in View of Public Acceptance	959
6. Feasibility of Advanced Fuel Fusion Reactor	
NAGAYAMA Yoshio, TOMITA Yukihiro and MITARAI Osamu	962
7. Summary - Is the ST Reactor a Promising Choice?	965
Lecture Note	
Energetic Particle Diagnostics for Transport Analysis	
2. Neutral Particle Diagnostics for the Energetic Particle Transport Analysis	
OSAKABE Masaki, KUSAMA Yoshinori and OKAMURA Shoichi	971
Contributed Paper	
Development of System Code for Helical Fusion Reactors and Research on Its Physics	
and Engineering Critical Issues	981
Letters	
Dynamic Analysis of ITER Tokamak Using Simplified Model for Support Structure	
I AKEDA Nobukazu and SHIBANUMA Kiyoshi	988
Introduction of Research Group	
Atomic and Plasma Spectroscopy Research Group, Department of Engineering Physics and Mechanics,	001
Kyoto University	991
News of Related Fields	992
Prasilia anu Fusion Galenuar	372
Liet of Nowly Arrived Publications NIES	000
	220

Cover

A tokamak reactor ridiculed as a big unless fellow. Many years have passed for seeking a marketable tokamak reactor (at most as twice weight as PWR) being in harmony with a technological feasibility (i.e., it's possible to work out the R&D program). VECTOR stands for VEry Compact TOkamak Reactor, named with all our prayer. (p.944, [Can We Obtain the Realistic Power Reactor in the ST Approach?], Japan Atomic Energy Research Institute, Satoshi Nishio, *et.al.*)

Published Monthly by The Japan Society of Plasma Science and Nuclear Fusion Research 3-1-1, Uchiyama, Chikusa-ku, Nagoya 464-0075, Japan Tel 052-735-3185, Fax 052-735-3485, E-mail:jspf@nifs.ac.jp, URL:http://www.jspf.or.jp/