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A New Method of Electron Density Measurement

by Fabry-Perot Interferometry
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A new method for determining the electron density of a thin plasma by means of Fabry-Perot interferometry is
proposed. The interferometer consists of two plasma layers and dielectric material surrounded by two plasma layers.
The transmittance of electromagnetic waves across the interferometer is calculated, and Fabry-Perot resonances are
demonstrated. It is shown that the plasma density can be determined based on the measurement of the resonance
frequency when the width of a plasma layer is known.
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A Fabry-Perot interferometer is often used for
spectroscopic measurements of visible light [1-3] and x-ray
[4]. We here propose a new method for determining the
electron density of a thin plasma by means of Fabry-Perot
interferometry. A Fabry-Perot interferometer using thin
plasmas as the resonator is shown in Figure 1. We assume
that uniform plasma is confined by a very thin material which
is transparent for electromagnetic waves, and for the sake of
simplicity, we here neglect the plasma-confining material. A
dielectric material with the dielectric constant εa is inserted
between two thin-plasma layers. If the wave frequency ω is
lager than the electron plasma frequency ωpe, the wave is in a
propagating mode, and otherwise the wave becomes a
evanescent mode. In this article, we can show that the Fabry-
Perot resonance occurs and has very sharp peak in ω for
wave-evanescent over-dense plasmas (ω < ωpe), and thus the
Fabry-Perot interferometer can attain its high resolution [5,6].
We can therefore determine the electron density of a thin
plasma from the measurement of the resonance frequency
because the resonance frequency is dependent on ωpe.

Our starting point is a one-dimensional Maxwell wave
equation given by
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where k = ω/c, c is the speed of light, ωpe = (e2np/ε0m)1/2 is
the electron plasma frequency with a constant density np, m
the electron mass, e the electric charge, and ε0 the permittivity
of free space. The solution of eq.(1) with eq.(2) is given by,
for over-dense plasmas (ω < ωpe),
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with

λ = k δ = k (ωpe /ω)2 – 1 and k a = k εa
(4)

where the eight coefficients a, b, c1, c2, d1, d2, f and g are
determined from the continuity conditions of E and its
derivative at z = 0, L, 2L, and 3L. After rather lengthy
calculations, we can obtain the transmittance T of
electromagnetic waves traversing this Fabry-Perot
interferometer. We note that the transmittance T is a function
of three parameters, that is, ω /ωpe, εa, and ωpeL/c.
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Fig. 1 Schematic of Fabry-Perot interferometer using plasma.
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We first show the wave transmittance T as a function of
ω/ωpe for εa = 1 (i.e., a vacuum) and three different values of
ωpeL/c (= 1, 3 and 5) in Fig. 2. When ωpeL/c = 1, the
transmittance T monotonously decreases with the decrease of
ω /ωpe, and no Fabry-Perot resonances appear. However,
Fabry-Perot resonances can arise for ωpeL/c = 3 and 5. We
have one resonance for ωpeL/c = 3 and two resonances for
ωpeL/c = 5. We see that the number of the resonances
increases with the increase of ωpeL/c, and the resonance peak
becomes sharper for the larger value of ωpeL/c. In Figure 3,
we show the Fabry-Perot resonance frequencies as a function
of ωpeL/c for εa = 1. The resonances up to the fifth resonance
are shown in the figure. Each resonance frequency decreases
with the increase of ωpeL/c.

We next mention a method for determining the electron
density of thin plasmas used in the Fabry-Perot interferometer.
We concentrate on the first resonance frequency, which is
detected primarily by upward frequency sweeping. The first
resonance frequency ωR shown in Fig. 3 can be well fitted by
exponential functions as, for 1.2 ≤ x ≤ 16,

ωR(x ) = ωpe a0 + ai exp (–x /d i )Σ
i = 1

3

, (5)

a0 = 0.09659,
a1 = 0.56455, d1 = 2.35393,
a2 = 2.86458, d2 = 0.32293,
a3 = 0.50245, d3 = 8.56968,

where x = ωpeL/c. If the plasma thickness L is known in
eq.(5), we can determine the plasma density np through ωpe

by measuring the first resonance frequency ωR, because eq.(5)
is a function of ωpe and ωR. In Figure 4, we show the
relationship between the plasma density np and the first
resonance frequency ωR for εa = 1 and different values of L.
Thus, we see that we can determine the electron density from
the measurement of the first resonance frequency by Fabry-
Perot interferometry. It is also found that the resonance
frequency shifts to the lower frequency side for the fixed L
and np when the dielectric constant εa increases. Finally, we
consider that the present method can be applied to the electron
density measurement of micro-plasmas such as PDP plasmas
and semiconductor plasmas. However, a more realistic model
should be necessary for the electron density measurement of
industrial PDP plasmas.
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Fig. 2 Transmittance T as a function of ω/ωpe for εa = 1 and
ωpeL/c = 1, 3, and 5.

Fig. 3 Resonance frequencies ωR/ωpe as a function of ωpeL/c for
εa = 1.

Fig. 4 Plasma density np as a function of the first resonance
frequency ωR for εa = 1 and L = 1, 2 and 3 mm.


