

Contributed Paper

レーザー生成球対称 Sn プラズマからの 極端紫外線(EUV)放射特性

西村博明,重森啓介,中井光男,藤岡慎介,島田義則¹⁾,橋本和久¹⁾ 山浦道照¹⁾,内田成明¹⁾,松井亮二,日比野隆宏,奥野智晴,陶業争 長井圭治,乗松孝好,長友英夫,ZHAKHOVSKII Vasilli,古河裕之¹⁾,砂原淳¹⁾, 河村徹¹⁾,西川亘²⁾,村上匡且,西原功修,宮永憲明,中塚正大,井澤靖和 (大阪大学レーザー核融合研究センター ¹⁾レーザー技術総合研究所,²岡山大学工学部)

Characterization of Extreme UV Radiation from Laser Produced Spherical Tin Plasmas for Use in Lithography

NISHIMURA Hiroaki, SHIGEMORI Keisuke, NAKAI Mitsuo, FUJIOKA Shinsuke, SHIMADA Yoshinori¹⁾, HASHIMOTO Kazuhisa¹⁾, YAMAURA Michiteru¹⁾, UCHIDA Shigeaki¹⁾, MATSUI Ryoji, HIBINO Takahiro, OKUNO Tomoharu, TAO Yezheng, NAGAI Keiji, NORIMATSU Takayoshi, NAGATOMO Hideo, ZHAKHOVSKII Vasilli, FURUKAWA Hiroyuki¹⁾, SUNAHARA Atsushi¹⁾, KAWAMURA Tohru¹⁾, NISHIKAWA Takeshi²⁾, MURAKAMI Masakatsu, NISHIHARA Katsunobu, MIYANAGA Noriaki, NAKATSUKA Masahiro and IZAWA Yasukazu Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan ¹⁾Institute for Laser Technology, Suita, Osaka 565-0871, Japan ²⁾Faculty of Engineering, Okayama University, Tsushima-naka, Okayama 700-8530, Japan (Received 13 January 2004/Accepted 24 February 2004)

A new research project on extreme ultraviolet (EUV) source development has been started utilizing resources of laser fusion research. The main task of the project is to provide a scientific basis for generating efficient, debris -free, high power EUV plasma source for production of semiconductor devices. Spherical solid-tin targets were illuminated uniformly with twelve beams from GEKKO XII to create spherical plasmas, and EUV emission spectra were absolutely measured. The highest conversion efficiency of 3 % to 13.5 nm EUV light in 2 % bandwidth was attained at irradiance of around 5×10^{10} W/cm². The experimental data were well reproduced by a theoretical model taking power balance in the EUV plasma into consideration.

Keywords:

laser plasma radiation source, extreme UV light, EUV lithography, radiation hydrodynamics

1.はじめに

レーザー生成プラズマから放射される高強度電磁波放射 の幅広い応用が展開されている.これらには例えば生体や 電子デバイスのラジオグラフィ[1],固体物性研究におけ る短パルスプロープ[2],そして半導体製造における光リ ソグラフィ[3]などがある.中でもプラズマ放射極端紫外 線(EUV)を用いたリソグラフィ技術は,ユビキタス・ネッ トワーク社会を支える半導体集積回路の超微細化における キーテクノロジーの一つとして,今大きな注目を浴びてい る.

縮小投影露光システムで用いられる光源はKrFレーザー

(波長248 nm)から ArF レーザー(193 nm)へと,その短 波長化への歩みを早めている.現在開発が進められている F₂レーザー(157 nm)光による加工でも線幅60 nm が限界 とされている一方で,わずか15 nmの空間にMOS型トラン ジスタができることが実証され[4],細線化の追求は終わ ることがない.このような動きを背景に,線幅50 nm 以下 の次世代半導体プロセスへ向けた波長13 - 14 nmの極端紫 外線(EUV)を光源とした光リソグラフィ技術の開発に熾 烈な国際競争が繰り広げられている.

光源に対する要求仕様値は大手半導体素子供給企業や製 造装置企業の協議により半年ごとに更新されており,現在

author's e-mail: nishimu@ile.osaka-u.ac.jp

This article is based on the invited talk at the JSPF Annual Meeting (2003, Mito).

(2003年11月)のところ,中心波長13.5 nm,2%帯域に,繰 り返しレート7-10 kHz以上のパルスで,光源取り出し部 でのEUVパワーが115 W以上必要とされている[5].中心 波長が13.5 nm に選ばれたのは,リソグラフィシステムに おいて使用される光学系においてMo/Si多層膜反射鏡が採 用されているからである.プラズマから光源取り出し部ま での光伝達効率はおおよそ30%程度なので,光源プラズマ 自体からは実に300 W以上もの出力値が要求されてい る.このような大出力化に加え,プラズマからは様々なデ ブリ(プラズマ粒子や,周辺ターゲット,電極などから放 出される微粒子の総称)が飛散するので,周辺のEUV光学 素子や排気装置などを汚染,あるいは破壊する.従って, デブリ発生の物理を理解し,これをいかに抑制するかも重 要な研究課題となっている.

日本では経済産業省のもと2002年6月EUVリソグラ フィシステム開発のための技術組合EUVA(Extreme Ultraviolet Lithography System Association)が組織され, EUV光源開発が最重要課題の一つとして取り上げられ た.同年,大阪大学を含めた国内6大学においてレーザー プラズマ光源(Laser Produced Plasma: LPP)ならびに放電 プラズマ光源(Discharge Produced Plasma: DPP)開発に関 する EUVA 再委託研究が開始された.

大阪大学レーザー核融合研究センターでは,平成15年度 より開始された文部科学省リーディングプロジェクトの下 で,国内の大学や研究所と共同しながら,新たに EUV リソグラフィ用レーザープラズマ光源開発研究を推進する こととなった.この研究には高出力レーザー技術,ター ゲット技術,プラズマ計測技術,理論・シミュレーション の4つの研究項目が重要であり,またこれらの要素が互い に深く連携し成果をフィードバックしていく必要がある. このような研究課題やアプローチはレーザー核融合研究と 多くの共通点があり,これまで培われてきた核融合の物理 的基盤や,レーザー,ターゲット製作,プラズマ計測など の技術的研究資源がレーザープラズマの産業応用に生かさ れようとしている.

2.EUV 光源開発の課題

光源開発研究においては次のような課題がある.

1)理論・実験データベースの確立

EUV 光源の実用化にはプラズマの最適条件を明らかに する必要がある.このためターゲットやレーザー照射条件 など幅広いパラメータ領域に対して実験データベースを整 え,状態方程式や原子モデルを含む放射流体コードの改良 に活用する必要がある.

2)先進ターゲットの開発

EUV リソグラフィシステムにおいてターゲット技術は 重要である.これまでも固体[6],ガスパフ[7],クラス ター[8],液滴9などが提案されてきたが,これらに加え, 低密度ターゲット[10]や水溶液11なども提案されてお り,クリーンで高効率な光源の開発研究が進められてい る.

3) 高平均出力レーザー技術

現在,必要とされている駆動レーザーはパルス幅数 ns,パルスあたりのエネルギー数J,レーザー波長0.5~1 µm,繰り返しレート10 kHz,平均出力5 kW以上である. このような高平均出力レーザーを実現するための基盤技術 研究も開始されている.

以上のような背景の下,J-級レーザーによる実験研究 に加え,激光XII号レーザーを用いたEUV球対称一様照射 プラズマからのEUV放射研究を実施し,1次元放射流体 コードへの実験データベースを求めた.また,Snプラズマ におけるパワーバランスを考察した理論モデルを構築し, 実験結果と良い一致が得られた.

3.激光 XII 号による実験

これまでの EUV 放射プラズマ研究では J - 級シングル ビームレーザーが用いられてきた[12,13].そのため,ター ゲット表面方向に沿ったプラズマ膨張や熱伝導によるエネ ルギー散逸が実験と理論との比較において影響を及ぼして きた.このような 2 次元効果に加えて,高温プラズマの周 辺に存在する中性あるいは低電離プラズマが高温部を覆 い,発生 EUV 光を吸収するため[14],観測された EUV スペクトルは見かけ上異なったものとなり,1次元流体 コードによるシミュレーションとの比較や理論解析のため の標準データとして採用するには問題があった.これらの 問題を解決するため,激光 XII 号レーザーの12ビーム照射 により球対称プラズマを生成し,レーザー照射強度とレー ザー波長依存性を調べた.

ターゲット材料として Sn を用いた.これは Sn が波長 13 - 14 nm あたりに強い EUV 放射ピークがあることに加え, 今後の研究の展開として考えられる EUV 放射領域の温度 ・密度計測に対して,ターゲットの薄膜化や多層化にも適 した材料であるからである.

実験に用いたのは固体プラスティックあるいはガラス球 をベースに厚さ1µmのSnをコーティングしたものであ る.実験パラメータとしてのレーザー照射強度を幅広く変 化させるため,基板球の直径は300~700µmとした.コー ト厚1µmが十分な厚みであることは予備実験により確認 した.

使用レーザーは激光 XII 号からの12ビームで,波長は 1.057 µm とした.パルス波形は半値幅 1.2 ns のガウス波形 であった.レーザーエネルギーとターゲット直径を適当に 組み合わせることにより,レーザー照射強度を $2 \times 10^{10} \sim 1$ × 10^{12} W/cm² と変化させた.12本のレーザービームは d/R = -3 あるいは - 5 で照射された.ここで d はターゲッ ト中心からの焦点位置であり,また R はターゲット半径を 示している.またマイナス符号はレーザー光焦点がター ゲットを超えた位置にあることを示している.各レーザー ビームのエネルギーの測定精度は 6 %以下であった.ま た,球状ターゲットでのレーザー照射強度の不均一性は 20%以下であった[15].

EUV放射は2つの分光器で観測した.一つは透過型回折 格子分光器(Transmission Grating Spectrograph: TGS)で ある.透過型回折格子(TG)は直径50 µm ピンホールに Contributed Paper

1,000本/mmの等間隔格子をもった分散素子である.ター ゲットから119mmの位置に直径50,100,200μmのピン ホールを設け,観測光源領域を制限し,光量調整とスペク トル分解能の向上を図った.観測波長範囲は1~20nm, 波長分解能は0.25nm以下であった.出力スペクトル画像 は背面照射CCDカメラにより記録した.TGの回折効率は 軟X線管と比例計数管により,また背面照射CCDカメラの 絶対分光感度はレーザープラズマを光源として,それぞれ 別途較正した[16].測定精度は20%以下であった.

第二の分光器は斜入射分光器 (Grazing Incidence Spectrograph: GIS)である.これは球面金コートミラー,スリット,1,200本/mmの不等間隔回折格子(17)から構成されており,出力スペクトルは背面照射 CCD カメラ(GIS-CCD)ないしは X 線ストリークカメラ(GIS-XSC)により記録した.波長分解能は 0.06 nm 以下であった.

TGS による絶対スペクトル計測に加え,EUV 絶対較正 カロリーメータE - MON(Jenoptik 社製)を用いて13.5 nm EUV 放射エネルギーを計測した.このカロリーメータは Zr フィルタ,Mo/Si 多層膜反射鏡(2枚),EUV フォトダ イオードから構成されており,135 nm を中心に帯域半値 幅約3.5% にのみ感度を有する単色EUV 検出器である.通 常,13.5 nm 帯でのEUV 変換効率を議論する場合,その帯 域幅を2%とするのが光源ユーザ側からの要請なので,そ の際には別途測定したスペクトル形状を考慮してこの帯域 幅に一致するよう補正した.このシステムの絶対感度はシ ンクロトロン放射光を用いて較正され,その測定精度は 2%以内である.なお,このカロリーメータはプラズマ全 体から放射されたEUV 光を検出しているので,TGSの場 合のような不均一性補正(後述)は必要ない.

ТООµт 700µт 400 -200 0 200 400 µт

Fig. 1 13.5 nm monochromatic image and corresponding intensity profiles of spherical tin plasma generated with Gekko XII laser. Laser was 1.057 μ m, 1.2 ns at 1 × 10¹¹ W/cm², and *d*/*R* was -5. Here *d* is the distance of the focal point from the target center, the negative sign means the focal point is beyond the target. *R* is the target radius.

球状プラズマからの EUV 放射の一様性を確認するため, ピンホール(直径 20 µm), EUV フィルタ(0.2 µm 厚 Zr を 0.1 µm パリレン薄膜にコーティングしたもの), Mo/Si 多層膜反射鏡(1枚),背面照射 CCD カメラからなる EUV 単色カメラによりプラズマ画像を観測した.微細メッシュ のシャドウ像から確認した空間分解能は 30 µm 以下であっ た.

Sn 球状プラズマからの EUV 単色画像の例を Fig.1 に示 す.この場合の照射条件は d/R = -5 で,照射強度は 1× 10¹¹ W/cm²の場合である.レーザー照射強度の不均一性に 起因する発光の不均一性が認められる.TGS による測定で は,球状プラズマの中央部をピンホールで抽出して測定し たため,このような EUV 単色画像を用いて測定値の補正 を行った.

レーザー照射強度を変化させたときの TGS で得た時間 積分スペクトルの例を Fig.2 に示す.発光スペクトルは主 として3つの帯域から構成されていることがわかる.水素 遮蔽平均イオンモデルによる計算との比較から,図中 A で示す波長1-3 nm のスペクトルは価数が22価以上の Sn で主量子数n = 4 ないしn = 5 からn = 3(M 殻遷移)への, また B で示す4-7 nm のスペクトルは価数が10数価~21 価 Sn のn = 5 ないしn = 6 からn = 4 への遷移(N 殻遷移) であると同定できる.また,C で示す12-17 nm 帯域にみ られる発光スペクトルは価数が10数価前後の $\Delta n = 0$ (n = 4の主として4p 4d と4d 4f)遷移である.レーザー照射強度 を増大させると,12-17 nm 帯域光に対し短波長側にみら

Fig. 2 Emission spectra of tin plasmas generated at 8.8×10^{10} , 3×10^{11} , and 9×10^{11} W/cm² laser intensities.

Fig. 3 Conversion efficiency of 13.5 nm EUV at 2% bandwidth for tin plasmas generated with Gekko XII 1.057 μm laser. The closed circles are data points obtained with E-MON (an absolutely calibrated EUV monochromatic calorimeter supplied by Jenoptik) and the closed triangles are those with an absolutely calibrated transmission grating spectrograph.

れる1-3nm,4-7nm 帯域の発光成分が相対的に大きく 成長している.この結果,13.5 nm 光は比較的低いレーザー 照射強度で高い変換効率を示す.Fig.3はレーザー照射強 度に対する 13.5 nm 光2%帯域における変換効率を示した ものである.ここでいう変換効率とは照射レーザーエネル ギーに対する波長 13.5 nm,帯域幅 2 %の EUV 放射エネル ギーの比である.黒丸のデータ点はE-MONによる計測結 果を,黒三角のデータ点はTGSによる測定結果を示してい る.E-MONデータ点のエラーバーは主としてレーザーエ ネルギー絶対値の測定誤差を表しているのに対し, TGS データ点のエラーバーは上で述べた EUV 発光の不均一を 補正する際の偏差を表している.13.5 nm 光への変換は レーザー照射強度が 4-6×10¹⁰ W/cm² 近傍で最大値を示 し、この強度より低くても、高くても13.5 nm光への変換効 率は低下する.なお,図中の曲線は以下で述べるEUV放射 理論モデルの結果である.

Spitzer らの Sn 平面ターゲットを用いた実験では最大変 換効率を与える照射強度は1×10¹¹ W/cm² 近傍であり [13],今回の球状ターゲットの結果と同程度かやや高い値 となっている.同時に Spitzer らは同一照射強度でもレー

Fig. 5 Time integrated EUV emissions for various laser intensities obtained with the transmission grating spectrograph coupled with the x-ray streak camera. Spectral intensity is normalized with laser intensity, indicating the relative maximum of conversion at around $0.6 - 1 \times 10^{11}$ W/cm². The curves for the intensities of 1.2×10^{11} and 2×10^{11} W/cm² are tightly overlapping so that it is hard to distinguish each other on this figure.

ザースポット径の増大に伴い変換効率は増加し,スポット 径が約400μm以上でないと安定した変換効率が得られな いと指摘している.今回の結果とSpitzerらの結果の比較 から,大きな照射スポット下でも平面ターゲットでは2次 元効果は完全に除去できず,最適照射強度が異なったもの と考えられる.なお,Spitzerらの実験では放射角度分布計 測を実施していないので絶対変換効率そのものは推定値で あることに注意したい.

GIS-XSC により得られた分光ストリーク画像を Fig.4 に示す.さらに,このデータから得た時間積分スペクトル の結果を Fig.5 に示す.比較のため,縦軸に示す強度は照 射レーザー強度で規格化してある.TGS が示したのと同 様,レーザー照射強度が1×10¹¹ W/cm² 近傍で変換効率最 大を示している.照射強度が1.2×10¹¹ W/cm²と2×10¹¹ W /cm² の 2 つの場合については両者の曲線はほぼ重なって おり,このショットに限れば相対変換効率はほとんど差異 がない.照射強度の増大にともない,13-14 nm のスペク トルは太く平坦化を示し,5×10¹¹ W/cm² 以上では13.5 nm ピーク値とほぼ同程度になってくる.また,12 nm より も短波長側のスペクトル強度も増し,様々な微細構造をも

Fig. 4 Temporal evolution of EUV emission spectra for various laser intensities.

つ線スペクトル群が現れてくる.すべてのスペクトルは14 nmより長波長側に広がったテールをもっている.分光解 析からこの成分は4p4dあるいは4d4f遷移に付随するサ テライト成分であると推定されている.

レーザー照射強度の増大に伴い,変換効率が減少する傾向は時間分解分光計測の結果にも見られる.Fig.6にはGIS-XSCデータから抽出した13.5 nm成分のみの発光の時間変化を示している.比較的低強度の場合は発光履歴がほぼレーザー波形に追従しているのに対して,照射強度9×10¹¹W/cm²では発光ピークはレーザーピークの後に現れる.レーザー照射強度が1×10¹²W/cm²近傍ではプラズマ温度が上昇しすぎてSnのイオン化が過度に進んだ結果,13-14 nmのEUVの発光量はかえって低下し,レーザー照射が終了する時間領域で再結合プラズマからのEUV放射が観測されているものと解釈できる.

4 .EUV プラズマの理論的解析とシミュレーション

EUV 放射プラズマの詳細解析と放射最適プラズマ発生 の技術指針を与えるため,1次元放射流体コードの改良な らびに EUV プラズマ中でのパワーバランスの解析を行っ た[18].Sn プラズマからの13 - 14 nm 放射は, *Δn* = 0 遷移 が重要となる.そのため,従来の遮蔽水素近似における主 量子数 n のみの取り扱いでは不十分であるため,方位量子 数1を含む平均原子モデルを構築した.旧来の水素遮蔽平 均イオンモデルでは一つの平均化された電荷数(このとき は一般に実数となる)を用いてエネルギーレベルを水素近 似により求めていた.すなわち,本来,電荷数(自然数)で きまる固有のエネルギーレベルをもった様々なイオンの集 合体として取り扱うべきところを,計算の簡素化のために 全体の平均価数で一括代表していた.これを改め,まず平 均電荷数を求め,次に自然数からなる電荷数のイオンの占 有比率を統計計算から求め,自然数の価数から成るイオン でのエネルギーレベルを求める方式に改めた[19].また, それらの遷移を含む放射係数・吸収係数の計算,あるいは 比熱,圧力などの状態方程式モデルを新たに作成した.

Fig. 6 Comparison of 13.5 nm EUV emission profiles with the laser pulse. Excessive laser intensity results in delayed appearance of the 13.5 nm emission.

Fig. 7はこうして改良された放射流体コードにより求めた, レーザーピークにおける温度・密度プロファイル計算例を 示している.この計算ではパルス幅5nsでピーク強度5× 10¹¹ W/cm² の1.057 µm レーザー光がSn ターゲットを照射 している.高Z物質からなるレーザープラズマにおいて共 通する特徴は,2段のアプレーション構造が現れることで ある[20].コロナ領域で吸収されたレーザーエネルギーは 電子熱伝導により運ばれ,低密度側に最初のアプレーショ ン領域を形成する.図では約13 µm の位置にこれが見られ る.さらに,吸収領域から放射されたX線がより高密度領 域まで到達し,第2番目のアプレーション領域を形成す る.こうして第1番目のアプレーション領域と第2番目の アプレーション領域に挟まれた領域に比較的平坦な密度構 造をもつプラトーが形成される.

このような放射流体コードの改良と平行して,Snプラズ マを対象とした nl - スキームのレート方程式求解コード を開発し,電離エネルギー,放射率などの計算を行った. この計算結果を基にして,EUVプラズマ中のパワーバラン スを考察し,EUV 放射の理論モデルを構築した[18].この モデルではコロナ領域におけるプラズマの膨張損,イオン 化損,放射損の3つを成分として考慮し,これらの和が入 射レーザーパワーと均衡すると仮定した.一般に,EUV プラズマを生成するレーザーの照射強度は低いのでレー ザー光吸収率は高く,入射レーザーパワーと吸収パワーは 等しいとして良い.次に,簡単化のため,境界イオン密度 を4×10¹⁹ cm⁻³とする光学的に薄いコロナプラズマ領域と 光学的に厚く局所的熱平衡状態 (Local Thermal Equilibrium: LTE)状態にあるプラズマ領域の二つから形成され るとした.この境界密度は,Fig.7に示すように,イオン密 度のスケール長が高密度側と低密度側で大きく変化する近 傍の密度に相当する(図中, 白丸で表示). コロナ領域で発

Fig. 7 Ion density and electron temperature profiles of tin plasma generated with a 1.057 μ m, 5 ns laser pulse at 5×10¹¹ W/cm² calculated by an improved version of 1-dimensional radiation hydrodynamic code. Shown are those at the laser peak.

生した放射成分のうち,真空側に放射される半分の成分は そのまま放射されるものとし,高密度LTE領域側に伝搬し た残り半分はこの高密度領域を加熱して、プラズマ温度に 等しい放射温度をもつ黒体からの再放射を行うものと仮定 した.こうして入射レーザーパワーに対する 13.5 nm(2%) 帯域)放射パワーの比率を求めた.結果を Fig.3 に示す.実 線はトータルな 13.5 nm EUV 放射成分を示し,破線はその うちの高密度領域からの寄与を示している.実験結果とモ デル計算とは良い一致が得られている.レーザー照射強度 の増大に伴い低密度プラズマからの EUV 放射成分の寄与 は低下しているのに対して,高密度領域からの寄与は大き く変化しないことから,高照射領域では高密度プラズマか らの再放射成分が支配していることがわかる.低強度領域 ではイオン密度のスケール長が短いため,実験における吸 収率は低下していると予測されるが,モデル計算では常に 100%吸収を仮定しているので,実験値に対しモデル値は 高めになっていると考えられる.

5.まとめ

レーザープラズマ EUV 光源開発に関する新しい研究が 開始された.Sn 球状プラズマを対象とし,照射レーザー強 度に対する依存性を明らかにした.レーザー照射強度0.6 -1×10¹¹ W/cm²で13.5 nm(2%帯域)光に対し,最大3% の変換効率が得られることを明らかにした.実験結果はプ ラズマ内部におけるパワーバランスモデル計算により良く 説明された.

現在,高精度な実験を通して集められた実験データをも とに放射流体コードの改良を進め,光源システムの実用機 開発における技術指針を与えようとしている.特に,レー ザー核融合研究用に開発された激光 XII 号レーザーシステ ムによる球対称プラズマ実験は EUV 放射プラズマシミュ レーションコードのベンチマーク実験として重要である. また,本論文では触れなかったが,Sn のような高 Z 物質に 対する原子物理モデルの構築のため,激光 XII 号レーザー を用いたオパシティ実験も進行中である.

謝辞

本研究の一部は文部科学省リーディングプロジェクト 「極端紫外(EUV)光源開発等の先進半導体製造技術の実用 化」の研究助成を得て実施された.本研究を実施するにあ たりレーザーオペレーション,ターゲット製作,プラズマ 診断,計算機運用に技術的支援をいただいた大阪大学レー ザー核融合研究センターの方々に感謝いたします.

参考文献

- I.C.E. Turch and J.B. Dance, "X-rays from Laser Plasmas: Generations and Applications", Chap. 10 (John Wiley & Sons, West Sussex, England, 1999).
- [2] C. Rischel *et al.*, Nature 390, 490 (1997): A. H. Chin, Phys. Rev. Lett. 83, 336 (1999).
- [3] For example, B. Yaakobi *et al.*, Appl. Phys. Lett. 43, 686 (1983); D.J. Nagel *et al.*, Appl. Opt. 23, 1429 (1984).
- [4] J.D. Meindl et. al., Science 293, 2044 (2001).
- [5] V. Banine, "Update EUVL source Requirements", Proceeding of EUV Lithography Source Workshop, October 14, 2002 Dallas Texas, International SEMATECH (www.sematech.org).
- [6]大道博行:「レーザープラズマX線源」レーザー研究 27,3(1997) とその参考文献.
- [7] H. Fiedrowicz et al., Appl. Phys. Lett. 62, 2778 (1993).
- [8] M. Mori et al., J. Appl. Phys. 90, 3595 (2001).
- [9] F. Jin and M. Richardson, Applied Optics 34, 5750 (1995).
- [10] H. Nishimura et al., to appear in Proceeding of the 2nd International EUVL Symposium, Sep. 30-Oct. 2, Antwerp (2003), Source 102.; K. Nagai et al., ibid, Source 93; K. Nagai, et al., to appear in Trans. Mater. Res. Soc. Jpn, 29 (2004).
- [11] M. Richardson *et al.*, *Proceeding of the 1st International EUVL Symposium*, Oct. 15-16, Dallas (2002), Source 40.
- [12] H.W. Choi et al., J. Opt. Soc. Am. B 17, 1616 (2000).
- [13] R.C. Spitzer *et al.*, J. Appl. Phys. 79, 2251 (1993).
- [14] M. Knouff et al., J. Appl. Phys. 90, 3726 (2001).
- [15] M. Murakami, K. Nishihara and H. Azechi, J. Appl. Phys. 74, 802 (1993).
- [16] 大貫大輔, 西村博明, 大道博行:レーザー研究 26, 700 (1998).
- [17] T. Kita et al., Appl. Opt. 22, 512 (1983).
- [18] K. Nishihara et al., to appear in proceeding of the 3nd International Conference on Inertial Fusion Science and Applications, Sep. 7- 12, Monterey, California, TuO12.5.
- [19] A. Rickert, K. Eidmann and J. Meyer-ter-Vehn, "Third International Opacity Workshop and Code Comparison Study Final Report", March 7-11, 1994, MPI for Quantum Optics MPQ204.
- [20] J. Myer-ter-Vehn, P. Pakula, R. Sigel and K. Unterseer, Phys. Lett. 104, 410 (1984).