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Dispersion Relation of Electromagnetic Waves

in One-Dimensional Plasma Photonic Crystals
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The dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals is studied. The
plasma photonic crystal is a periodic array composed of alternating thin plasma and dielectric material. The dispersion
relation is obtained by solving a Maxwell wave equation using a method analogous to Kronig-Penny’s problem in
quantum mechanics, and it is found that the frequency gap and cut-off appear in the dispersion relation. The frequency
gap is shown to become larger with the increase of the plasma density as well as plasma width.
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Photonic crystals, which are known to exhibit many
unique features, have been recently gaining attention in the
fields of solid-state and optical physics [1,2]. The
technological applications of photonic crystals are expanding
widely as, for example, in frequency filters, frequency
converters, etc.

In this paper, we study the dispersion relation of
electromagnetic waves in one-dimensional(1-d) plasma
photonic crystals newly proposed in Ref.3. The schematic of
one-dimensional plasma photonic crystals is shown in Fig.1.
The plasma photonic crystal is a periodic array composed of
alternating thin plasma and dielectric material. The calculation
of the dispersion relation in 1-d plasma photonic crystals is
analogous to that of the energy band in photonic crystals, and
we expect that band structures can appear in the dispersion
relation of electromagnetic waves in 1-d plasma photonic
crystals.

Our starting point is a 1-d stationary Maxwell wave
equation given by

d2

dz 2
+ k0

2ε(z ) E(z ) = 0 , (1)

ε(z ) =
1 –

ωpe

ω
2

, – Ld ≤ z ≤ 0

εm , 0 < z < L
(2)

ε [z ± L(1 + d)] = ε [z] , (3)

where k0 = ω /c, ω is wave frequency, c is the speed of light,
ωpe = (e2np/ε0m)1/2 is the electron plasma frequency with a
density np, and εm is the dielectric constant of a dielectric
material.
We can solve eqs.(1)-(3) using a method analogous to Kronig-
Penny’s problem with a periodic potential in quantum
mechanics. Thus, the solution of eq.(1) is given by, for ω >
ωpe,

E(z ) =
A exp (i kmz ) + B exp (– i kmz ) ,

C exp (i kpz ) + D exp (– i kpz ) ,
0 < z < L

– Ld ≤ z ≤ 0
(4)

and for ω < ωpe,

E(z ) =
A exp (i kmz ) + B exp (– i kmz ) ,
C exp (κ z ) + D exp (– κ z ) ,

0 < z < L
– Ld ≤ z ≤ 0 ,

(5)
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Fig.1 Schematic of 1-d plasma photonic crystal.
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where kp = k0 1 – (ωpe / ω)2 , κ = k0 (ωpe / ω)2 – 1 , and

km = k0 εm . The four coefficients A, B, C and D are
determined as follows: We first impose the continuity
conditions of E and dE/dz at z = 0. Secondly, from the
periodicity of ε (z) shown by eq.(3) and also of E(z) given by

E[z + L(1 + d )] = E[z] , (6)

we obtain

E(L) = λE(–Ld ) , and E ′(L) = λE ′(–Ld ) , (7)

λ = exp[ikL(1 + d )] , (8)

where E ′ denotes the derivative of E. From these conditions
and by rather lengthy calculations, we obtain the dispersion
equation of electromagnetic waves in 1-d plasma photonic
crystals given by, for ω < ωpe,

cos [kL (1 + d )]

=
κ 2 – km

2

2κ km

sin( kmL ) sinh(κLd )

+ cos( kmL ) cosh(κLd ) , (9)

and for ω > ωpe,

cos [kL (1 + d )]

=
kp

2 + km
2

2 kp km

sin( kmL ) sinh( kpLd )

+ cos( kmL ) cosh( kpLd ) , (10)

Hereafter, we show the results of numerical calculations
for eq.(9) or (10). We note that there are three selective
parameters, ωpeL/c, d, and εm, in the numerical calculations.
We first show the dispersion relation of electromagnetic waves
for ωpeL/c = 1, d = 1, and εm = 1 and 5 in Fig.2. We see that
the dispersion relation becomes a band structure with
frequency gaps, and a cup-off frequency exists. It is clear that
the phase velocity decreases for the larger value of εm. We
next show the dispersion relation for ωpeL/c = 4, d = 1, and
εm = 1 and 5 in Fig.3. We see that the frequency gap becomes
larger with the increase of the plasma density or plasma
width. For a micro-plasma such as PDP plasma, we have
ωpeL/c ~ 1 for np = 1 × 1014cm–3 and L = 0.5mm. Figure 4
shows the dispersion relation for ωpeL/c = 2, εm = 5, and d =
0.1 and 1. This figure shows that the phase velocity becomes
slower and the frequency gap is smaller for the narrower
plasma width when the width of a dielectric material is fixed.

Finally, we consider that the plasma photonic crystal can
be applied to new plasma-functional devices, for example,
frequency filters in the millimeter-wave range. This work was
partly supported by Effective Promotion of Joint Research
with Industry, Academia, and Government in Special
Coordination Funds for Promoting Science and Technology,
MEXT.

Fig. 2 Dispersion relation for ωpeL/c = 1, d = 1 and εm = 1 and
5.0.

Fig. 4 Dispersion relation for ωpeL/c = 2, εm = 5 and d = 1 and
0.1.

Fig. 3 Dispersion relation for ωpeL/c = 4, d = 1 and εm = 1 and
5.
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