
A new framework for integrated simulation model using

MPMD approach

A.Takayama, K.Shimizu1), Y.Tomita, and T.Takizuka1)

National Institute for Fusion Science, Toki,Gifu, Japan
1)Japan Atomic Energy Agency, Naka, Ibaraki, Japan

We introduce a new effective framework to combine computer codes into integrated simulation

model. The framework employs MPMD (Multiple Program Multiple Data) approach and each computer

code is written with MPI (Message Passing Interface) library. Adopting MPMD approach makes each

computer code independent, which leads to the capability for maintenance and improvement of the

integrated simulation model. The validity and usability of this approach is shown through a simple

example model, which simulates the integrated divertor code, SONIC .

Keywords: MPMD (Multiple Program Multiple Data), MPI (Message Passing Interface), integrated

simulation

1. Introduction
Integrated simulations, such as multiscale simula-

tions, multiple-physics simulations, and so on, have

come up and been performed, recently [1, 2, 3, 4].

In such simulations, at least several computer codes

based on different physics or different spatio-temporal

scales have to be combined with each other. Estab-

lishing a simple and useful way to combine computer

codes is significant for promoting integrated simula-

tions. Though it is possible to combine computer

codes simply by restructuring and bundling together

into a single program, such a procedure diminishes the

capability for maintenance and improvement of the

integrated simulation code. The simple and straight-

forward approach of unifying program is usable for

proving validity of integrated simulation. It, however,

is not suitable for continuing model development, es-

pecially not for group or team development.

Here we introduce a new effective framework to

combine computer codes into integrated simulation

model. The framework employs MPMD (Multiple

Program Multiple Data) approach and each computer

code is written with MPI (Message Passing Interface)

library [5], [6]. Adopting MPMD approach makes each

computer code independent, or at least not strongly

coupled, which leads to the capability for maintenance

and improvement of the integrated simulation model.

Using MPI enables to execute each code on a com-

puter system suited to it, which might enhance the

performance of the integrated simulation execution.

2. MPMD approach
Each computer code in an integrated simula-

tion can be regarded as a function or mapping fi :

(x
(j)
i ,pi) �→ y

(j)
i , where x

(j)
i , pi, y

(j)
i , and i ∈ [1, N]

are set of input variables, input parameters, output

author’s e-mail: takayama.arimichi@nifs.ac.jp

variables for j-th term of sequence, and identifier of

functions, respectively. Sets of variables (x
(j)
i) can be

determined by sets of the previous outputs (y
(j−1)
i),

(i ∈ [1, N]) for well-posed problems. In the single pro-

gram approach all functions fi are implemented in a

single program and all variables xj are stored into the

single program. On the other hand, our MPMD ap-

proach separates functions fi(xi,pi), (i ∈ [1, N]) into

independent program and uses a master program or

master programs in order to exchange and transform

variables appropriately.

Grouping
In our MPMD approach simulation codes are sep-

arated into several programs. MPI library is em-

ployed for communication between programs. Ad-

equate grouping of programs is prefereble for using

MPI effectively. Figure 1 is a schematic of grouping

method. In this case there are 14 processes, 4 pro-

gram groups plus master group. The master group

governs integrated simulation and communicates with

each other program groups. The process with MPI

rank 0 in master group is called as ‘grand master’

process. First of all, we group programs according

to an identifier which consists of a character string.

Communication between program groups is performed

between MPI rank 0 process in each program groups.

For the purpose of this inter-group communication, we

construct the other MPI group, which we call ‘data ex-

change group’.

Construction of General MPI Datatype
Integrated simulations have many data to be ex-

changed. In order to exchange such data effectively

with MPI library we should make data blocks accord-

ing to timing of exchanging the data and construct

a General MPI Datatype for each data block. Using

604

J. Plasma Fusion Res. SERIES, Vol. 9 (2010)

©2010 by The Japan Society of Plasma
Science and Nuclear Fusion Research

(Received: 18 November 2009 / Accepted: 5 April 2010)

Fig. 1 Schematic view of grouping processes/programs.
There are 14 processes, which are grouped into 4
sub (program) groups and a master group. Inter-
group communication is performed within ‘data ex-
change group’, which consists of process with MPI
rank 0 within each local group.

a routine for easy construction of datatype offered in

our MPMD library helps this step. The usage is the

followings:

call initMakeType

call addVariable(time)

call addVariable(pwi)

call addVariable(pwe)

call termMakeType(newtype)

In this case a general MPI datatype newtype contain-

ing 3 variables of time, pwi, and pwe is constructed.

Condition message
In order to organize multiple programs, each pro-

gram should notify the its own condition or status to

the grand master process at an appropriate timing.

For this purpose, we define some condition messages

of named integer constant. They are used as the tag

of MPI communication.

READY means that the process is ready for calculation

and requests the condition of the next time inter-

val.

DATA INQUIRE means that the process requests input

data for execution.

FAST MODE means that the process has detected an

abrupt change of physical quantity or condition

during the calculation.

CALC DONE means that the process has completed the

calculation for the requested time interval and

sends results.

Other condition messages can be implemented into

this framework if necessary.

General MPI Datatype for time related information
In order to exchange the condition of the next

time interval a General MPI Datatype of 3 real and

a integer variables is defined. 3 real variables are for

the current time, the next time interval, and the time

step for calculation, and the integer variable is used

for a flag. Some bits of the integer variable expressed

in binary form have the meaning:

TERMINATE indicates termination of the execution.

WAIT means a request for some wait.

FASTMODE indicates that all process are in the fine

time resolution calculation mode described below.

CALCFAST indicates whether the time step control is

carried out.

Control of execution
We introduce two types of execution control. One

is a control of time step. If the control of time step

is on, when an abrupt change of physical quantity or

condition is detected, we rewind time steps and re-

execute with finer time step during several time steps.

The other is a sequence control of program execu-

tion. Each program group depends on other program

group(s). If all processes are executed in parallel, the

dependency could have been violated. When the se-

quence control of program execution is switched on,

the grand master process controls the order of pro-

gram execution. This control, however, could make

processes wait for a while and degrades the efficiency

of computation.

Structure of Grand Master process
The aim of grand master is governing integrated

simulation and exchanging data. At first initializa-

tion routines for using MPMD approach is called. In

this step, grouping of programs and construction of

exchange-data structures are carried out. Then the

grand master process receives initial condition data

from the local master process(es) of the other pro-

gram group(s). The structure of the main calculation

loop is as follows:

mainLoop: do

call MPI_Probe(MPI_ANY_SOURCE&TAG..)

select case(istat(MPI_TAG))

case(READY)

call MPI_Recv(..READY..)

! termination condition is satisfied?

call MPI_Send(..READY..)

! all processes are being terminated?

! if not, cycle mainLoop

exit mainLoop

case(DATA_INQUIRE)

call MPI_Recv(kDataset...)

select case(kDataset)

case(Prog#1)

call MPI_Send(time,1,prog#1_Itype..)

...

end select

605

A. Takayama et al., A New Framework for Integrated Simulation Model Using MPMD Approach

case(FAST_MODE)

call MPI_Recv(..FAST_MODE..)

case(CALC_DONE)

call MPI_Recv(kDataset..)

select case(kDataset)

case(Prog#1)

call MPI_Recv(time,1,prog#1_Otype..)

! store received data

...

end select

! all processes have completed?

! if not, cycle mainLoop

call MPI_Barrier(dewld,ierr)

! notify whether abrupt change occured

end select

enddo mainLoop

Structure of Local Master process
Each local master process communicates with the

grand master process and exchanges data. In local

master process initialization routines for using MPMD

approach should be called, too. Then it sends ini-

tial condition data to the grand master process. The

structure of the main calculation loop is as follows:

do

call MPI_Send(..READY..)

call MPI_Recv(time,1,timType..)

if(is_msg(t_msg,WAIT)) cycle ! wait

call MPI_Send(kProg,..,DATA_INQUIRE..)

call MPI_Recv(time,1,Prog_Itype..)

call MPI_Bcast ! broadcast to my group

if(is_msg(t_msg,TERMINATE)) exit

do i=1,iter

call pls_exec(kcnd)

! abrupt change is detected? -> exit

enddo

call MPI_Send(kProg,..,CALC_DONE..)

call MPI_Send(time,1,Prog_Otype..)

call MPI_Barrier(dewld,ierr)

call MPI_Probe(MPI_ANY_SOURCE&TAG)

if(istat(MPI_TAG)==FAST_MODE)then

call MPI_Recv(..FAST_MODE..)

! rewind data

endif

enddo

3. Example problem
In order to verify the validity of the MPMD ap-

proach introduced in section 2, we make a simple ex-

ample problem, which simulates the SONIC code [1]

combined with the OFMC code. The SONIC code is

a simulation code package designed for analyzing edge

region of 2-dimensional magnetic confinement systems

and consists of the SOLDOR code which solves 2-

dimensional fluid equations for ion and electron, the

NEUT2D code which solves kinetic equations for deu-

terium neutrals (D and D2) with Monte Carlo (MC)

method, and the IMPMC code which solves kinetic

equations for impurity neutrals and ions with MC

method. Absorbed power of NBI heating is deter-

mined by OFMC code. The transports of plasma,

neutral and impurity are solved iteratively.

The simple model equations simulating the

SONIC+OFMC code are introduced as follows. They

consist of five parts, namely soldor describing the time

evolution of total particle number and stored energy,

neut2d describing the particle source by global parti-

cle confinement, impmc for the total radiation power,

and ofmc for the absorbed power of NBI heating.

Model of soldor
The number of plasma particles N and the energy

W can be modeled using the following equations:

dN

dt
= −N

τN
+ SN, (1)

dW

dt
= − W

τW
+ POH + PNBI − Prad. (2)

Plasma confinement property described by τN and

τW are assumed to be

τN = 0.7τW , (3)

τW =




0.85[s] (OH phase)

0.30[s] (L-mode phase)

0.92[s] (H-mode phase)

(4)

L→H and H→L mode transition conditions are taken

to be Te = 0.8[keV] and Te = 0.6[keV] at x = 0.95,

respectively. Here the temperature Te is assumed to

have a given profile and the value is determined by

the energy of plasma W and the number of plasma

particles N .

Model of neut2d
Particle source term in equation (1) is given by the

summation of particle flux due to recycling Γrecy, gas

puffing Γpuff and neutral beam injection (NBI) ΓNBI.

These three fluxes are given by

Γrecy = 0.6
N

τN
, (5)

Γpuff =




0.0 t < 0.25

0.75× 1021 0.25 ≤ t < 3.8

density control 3.8 ≤ t,

(6)

ΓNBI =
PNBI

80keV
. (7)

606

A. Takayama et al., A New Framework for Integrated Simulation Model Using MPMD Approach

For t ≥ 3.8, Γpuff is adjusted to fix the plasma density

of ne0 = 6.0× 1019.

Model of ofmc
Input power due to NBI P inj

NBI and absorbed power

into plasma PNBI are modeled by

P inj
NBI =




0.0[MW] t < 0.80

16.0[MW] 0.80 ≤ t < 4.5

10.0[MW] 4.5 ≤ t,

(8)

PNBI = ηP inj
NBI, (9)

where absorption rate η, which is a function of ne0

determined by N , is given by

η =

{
0.4 + (ne0/10

19 − 2.0) · 0.2 ne0 < 4× 1019

1.0 ne0 ≥ 4× 1019.

(10)

Model of impmc
Radiation loss term Prad in equation (2) is mod-

eled by the summation of radiation loss due to carbon

and argon impurity;

Prad C = 0.2(POH + PNBI), (11)

Prad Ar = PAr(t)

(
1 + 0.5

Te0

10

)
. (12)

Here a level of the radiation loss power due to argon

is given by

PAr(t) =

{
0 t < 2.3

1[MW] t ≥ 2.3.
(13)

4. Solution of example problem with
MPMD approach
We solve the example problem given by equations

(1)-(13) by use of the MPMD approach described in

section 2. The solution is shown in figure 2. In this

solution, seven MPI processes are used. Each one pro-

cess is for master, soldor, neut2d and ofmc, and three
processes are for impmc.

The three impmc processes are for local-master,
radiation loss due to carbon and radiation loss due

to argon. The local-master of impmc communicates
with grand-master process, distributes preconditions

to and gathers solutions from two processes used for

carbon and argon.

The soldor process receives N , W , τN and τW of

soldor previous results, SN determined by the particle

flux from neut2d, PNBI of ofmc, and Prad of impmc,
solves eqs.(1-4), and returns N , W , τN and τW . POH

is given as an input parameter.

Fig. 2 Solution of example problem by use of the MPMD
approach with the control of time step and the se-
quence control of program execution. These figure
shows plasma density, temperature, fluxes, input
and absorbed power, and radiation loss obtained by
soldor, neut2d, ofmc, impmc process, respectively.

The neut2d process receives N , τN of soldor and
PNBI of ofmc, solves eqs.(5-7), and returns Γrecy, Γpuff ,

ΓNBI.

The ofmc process receives ne0 of soldor, solves
eqs.(8-10), and returns PNBI. Input power due to NBI

described by eq.(9) is given as a parameter.

The impmc group receives POH, PNBI, and Te0 of

soldor, solves eqs.(11-13), and returns Prad.

The time interval of gathering all processes ∆T is

0.1[s] for usual case. The time step for each calcula-

tion ∆t is 0.02[s] for soldor, and 0.1[s] for the others,
which equals to the gathering time interval. When

abrupt change of physical quantity or condition, fine

607

A. Takayama et al., A New Framework for Integrated Simulation Model Using MPMD Approach

time resolution iteration with ∆T = ∆t = 0.01[s] is

carried out five times. After the fine time resolution

calculation, ∆T and ∆t are turned back.

At t = 0.800 NBI begins as equation (9). ofmc
detects the change and all processes move to the finer

time step mode. The jump of P inj
NBI causes jumps of

PNBI and ΓNBI, which leads to the increase of the tem-

perature Te0. After the fine time resolution calcula-

tion of five times iteration, all processes return to the

normal time step mode.

At t ∼ 1.40 Tedge exceeds 0.8keV and the system

undergoes a transition to H-mode, which is detected

by soldor and all processes move to the finer time

step mode. Using the finer time step, Tedge is found

to be lower than 0.8keV, which means that the transi-

tion to H-mode in the normal time step calculation is

mis-predicted one. During finer time step calculation,

Tedge exceeds 0.8keV at t = 1.417 and the system un-

dergoes a transition to H-mode. This causes the drop

of Γrecy, and then density Ne0 begins to increase.

At t = 2.320 argon injection begins, which is de-

tected by impmc and all processes move to the finer
time step mode. Prad Ar jumps, which degrades tem-

pereture increase. After the fine time resolution cal-

culation of five times iteration, all processes return to

the normal time step mode.

At t = 3.225, Ne0 > 4.0 × 1019 and this causes

the jump of η. soldor detects this rapid change. At
t = 3.830 neut2d detects the beginning of the density
control and jump of Γpuff . At t = 4.535 ofmc detects
the change of P inj

NBI. At the three timings, all processes

move to the finer time step mode once again. After the

fine time resolution calculation of five times iteration,

all processes return to the normal time step mode.

5. Concluding remarks
As shown in the previous section, our MPMD ap-

proach successfully carried out the calculation. In-

dependent programs, each of which solves different

equations, cooperates through the intermediation of

the grand master process.

The two types of execution control, that is, the

control of time step and the sequence control of pro-

gram execution, also works well. Figures 3 and 4 are

the case without the control of time step or the se-

quence control of program execution, respectively. In

those cases simulation conditions except for the execu-

tion control are same as the case in section 4. These

figures show that lack of execution control alters or

degrades the solution. Without the sequence control

of program execution, the previous time interval data

is used in some cases, or the synchronization of data

could be lost. This is because the degradation of the

solution occurs.

This indicates that appropriate execution control

is required for the MPMD approach introduced in this

article for the accuracy and efficiency of calculation.

Acknowledgment
The authors acknowledge Prof. A. Fukuyama at

Kyoto University and Prof. M. Yagi at Kyushu Uni-

versity for intensive discussions and comments.

[1] K. Shimizu, T.Takizuka, K. Ohya, K. Inai, T. Nakano,
A. Takayama, H. Kawashima and K. Hoshino, Nucl.
Fusion 49 (2009) 065028.

[2] A. Fukuyama, S. Murakami, M. Honda, Y. Izumi,
M.Yagi, N. Nakajima, Y. Nakamura and T. Ozeki,
Proc. of 20th IAEA Fusion Energy Conf. (Villamoura,
Portugal, 2004) IAEA-CSP-25/CD/TH/P2-3.

[3] M. Sato, S. Toda, Y. Nakamura, K.-Y. Watanabe, A.
Fukuyama, S. Murakami, M. Yokoyama, H.Funaba,
H. Yamada and N. Nakajima, Plasma Fusion Res. 3
(2008) S1063.

[4] B. Guillerminet, M. Airaj, P. Huynh, G. Huysmans,
F. Iannone, F. Imbeaux, J. B. Lister, G. Manduchi,
P. Strand and the contributors to the European Task
Force on Integrated Modelling Activity, Fusion Eng.
Des. 83 (2008) 442.

[5] Y. Aoyama, ‘Introductory Course in Parallel Program-
ming (MPI version)’ (in Japanese), available from
http://accc.riken.jp/hpc/training/text.html

[6] P.S. Pacheco, ‘Parallel Programming with MPI’, (Mor-
gan Kaufmann Publishers, 1997); Japanese translation
(Baifukan, 2001)

608

A. Takayama et al., A New Framework for Integrated Simulation Model Using MPMD Approach

Fig. 3 Solution of example problem by use of the MPMD
approach with the sequence control of program ex-
ecution. The difference between this figure and fig-
ure 2 is in that the control of time step is switched
off in this case.

Fig. 4 Solution of example problem by use of the MPMD
approach with the control of time step. The differ-
ence between this figure and figure 2 is in that the
sequence control of program execution is switched
off in this case.

609

A. Takayama et al., A New Framework for Integrated Simulation Model Using MPMD Approach

