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The dynamics of a global reconnection in the presence of a poloidal shear flow which is located in

between magnetic islands is investigated. Different linear regimes are identified according to the value of

the resistivity and the distance between the low-order resonant surfaces. It is found that the presence of

a small shear flow affects and significantly delays the global reconnection processes. It is shown that this

delay is linked to a breaking of symmetry imposed by the existence of the shear flow and the generation

of a mean poloidal flow in the resistive layers.
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1. Introduction
In tokamaks, the internal transport barrier is

observed in reversed magnetic shear configurations

where two low-order rational surfaces exist [1]. In such

configurations, toroidal and poloidal flows, as well as

temperature and density gradients can coexist close to

the plasma core [2]. Note that such gradient can origi-

nate different resistive instabilities which are currently

observed [3]. In fact, there is evidence that zonal flows

exist and that the shear flow is localized in between

resonant surfaces where the double tearing instability

can grow. The observed maxima of the flow velocity

are weak compared with the Alfvén velocity vA. Nev-

ertheless, such flows can be important with respect to

the turbulence level because the associated radial elec-

tric field can be linked to the formation of an ITB[4].

In fact, such configurations, allowing eventually the

generation of a strong internal barrier, are part of the

ITER scenarios for advanced confinement[5].

Previous works have investigated the influence of

a Bickley jet on a tearing instability[6, 7] and on a

double tearing instability [8]. More recently, Bier-

wage et al. [9] have studied the influence of the core

rotation amplitude - for a given sheared flow profile

- on the stability of magnetohydrodynamic (MHD)

and Kelvin-Helmholtz instabilities (KHI). These stud-

ies are mainly linear and a cylindrical geometry is

used. They have shown that KHI can develop at large

poloidal mode numbers and are strongly enhanced

when the core rotation passes a critical value of the or-

der of 10−2vA in the case where the distance between

the resonant surfaces is small. They also found that

below this critical value the growth rates of both the
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Fig. 1 Equilibrium profiles of the magnetic (dased lines)
and velocity fields (solid line).

MHD and KH mode decrease with the amplitude of

the core velocity. Recentently, Ishii et al. [10] have

studied the different growth phases of weakly coupled

non linear DTM with KHI stable rotation profile. Ad-

ditionally, It as been shown in [11] that micro insta-

bilities can play a crucial role on DTM dynamics.

In this paper, we focus on the case where the shear

flow is in between the two tearing instabilities. Within

the framework of MHD, a 2D slab geometry is used.

It is found that the nature of the dynamics depends

drastically on the distance between the low-order reso-

nant surfaces. The impact of the flow on the nonlinear

process leading to a global magnetic reconnection of

the system is studied. The origin and the role of the

dynamically generated m = 0 poloidal flow turbulence

are investigated as well as the dynamics at small scales

once the reconnection has taken place.

2. Model equations
We use a two field model corresponding to a re-

duced (MHD) description of the fluid equations that
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provides a minimal framework to study the impact of a

radially sheared flow φ0(x) on a double tearing mode.

The model consists of a set of two coupled equations

for the fluctuations of the electrostatic potential φ and

magnetic flux ψ. The equilibrium magnetic field in the

z− direction is given by the constant B0z and in the

poloidal by B0(x) = ψ�

0(x)y. The equilibrium current

is therefore j0 = ψ��

0 (x). The time evolution of the two

fields is described by

∂tω + [φ + φ0, ω + ω0] = [ψ + ψ0, j + j0]

+ν∇2
⊥ω , (1)

∂tψ + [φ + φ0, ψ + ψ0] = ηj , (2)

where η is the resistivity, ν the viscosity, ω = ∇2
⊥

φ

the vorticity, and j = ∇2
⊥

ψ the current density fluctu-

ation. The equations are normalized by τA = L⊥/vA

for the time, L⊥B0z for ψ, and L⊥vA for φ where τA

is the Alfvén time and L⊥ is a magnetic shear length.

The poloidal equilibrium magnetic field B0(x) is

chosen as

B0 = tanh
�x − x1r

aB

�

− tanh
�x − x2r

aB

�

, (3)

where the parameter aB = 0.5 controls the width of

the profile, x ∈ [−Lx/2, Lx/2] and (x1r, x2r = −x1r)

are the locations of the resonant surfaces where double

tearing instabilities develop. The poloidal equilibrium

shear flow is given by

v0 = Av tanh(x/av) , (4)

where Av = 0.03 and av = 0.2. The resulting pro-

files are shown in fig. (1). The dashed lines rep-

resent four typical equilibrium magnetic profiles we

have used, corresponding to δx = x2r − x1r =

{π/2, 3π/4, π, 5π/4} (cyan, red, green and blue re-

spectively). The purple curve indicates V0. Equa-

tions (1–2) are solved numerically using a finite differ-

ence scheme in the x-direction, including an Arakawa

algorithm for an accurate conservation of the Pois-

son brackets [.,.] and a pseudo-spectral method in

the y−direction, including an appropriate de-aliasing

scheme[12, 13]. The number of grid points in the x

direction range from Nx = 256 to Nx = 2048, with

a typical spatial resolution of the order dx = 5.10−3.

Lx and Ly are the box size in the x and y directions

respectively. We find that these different profiles give

rise to very different dynamics. For instance, when

δx = 5π/4, no global reconnection occurs and complex

nonlinear dynamics linked to the poloidal rotation of

the islands are observed. When δx = π/2, islands do

not rotate and there is a global reconnection process

in between the resonant surfaces. In this paper, we

focus mainly on the latter situation.
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Fig. 2 Scheme for α calculation: Without shear flow (blue
line), γ(log(η)) is a line and α the associated slope.
With a shear flow, two different branches exist. For
the low resistivity branch, KH is unstable (green
line) and for the high resistivity one, KH is stable
(red line).
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Fig. 3 α as a function of the distance between rational
surfaces δx.

3. Coexistence of linear instabilities
It is well known that a constant magnetic field

stabilizes a shear flow instability when the initial flow

is a vortex sheet [14], as far as the Alfvén velocity ex-

ceeds the amplitude of the vortex sheet. In [8], it is

shown numerically that when the flow is forced with a

velocity field v(x) = A(1/ cosh(x/a)− 1)y, KHI coex-

ist with the magnetic tearing whenever a < 1. In the

latter work, the double tearing mode in the presence

of a shear flow in cases where no KHI develops has

also been studied, while in [9] this has been done in a

case where KHIs are present. However, the conditions

at which KHI and DTM coexist are not yet clear.

It is instructive to focus on the role of both the

distance between the resonances δx and the resistivity

for a fixed amplitude of the flow Av. In the absence of

shear flow, the growth rate of the resistive DTM scales

with the resistivity like ηα with α = 3/5 in the limit of

very ideally stable MHD conditions and α = 1/3 when

the system enters an ideally marginally stable regime.

Ideally Marginally stable means that the free mag-

netic energy of the ideal mode λH is zero[14, 15]. In

the limit of closed resonant surfaces, the latter can be

linked to the tearing instability parameter ∆�. λH de-

pends on the magnetic equilibrium profile and there-

fore on δx. Fig. 3 shows the dependance of growth

rate on the resistivity in the case with/without shear
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flow. Changing δx and η [16], we plot the power law

index α(δx) in fig. (3) . As expected, without shear

flow, the power law parameter α ranges in between the

two limit cases 1/3 and 3/5 (blue curve). When the

distance between two rational surfaces is large enough,

we converge to the standard tearing law. Conversely

when δx becomes of the order of a typical magnetic

shear length L⊥, we enter into a full DTM regime.

A global magnetic reconnection occurs nonlinearly in

such cases.

When a weak shear flow is added, we have to dis-

criminate between two regimes. A regime in which

the KHI is unstable appears, depending on the nu-

merical value of the resistivity. This instability is ra-

dially localized in the vicinity of the layer where the

velocity shear is maximal x ∼ 0. Typically, it has

a high poloidal mode number but we observe that

it modifies the growth of the tearing m = 1 mode

(km = m 2π/Ly). In fact, this is not surprising be-

cause the DTM regime is linked to a strong radial

coupling between the two magnetic surfaces and the

presence of vortices in between them modifies the na-

ture of the interaction, and a priori should weaken

it. In fig. (3), the high and low resistivity cases, the

KH stable (red curve) and KH unstable regimes (dark

green curve) are shown. We observe that, for δx ≤ 2,

the presence of a KH instability in between the res-

onances amplifies the power law index strongly such

that it even exceeds the asymptotic regime α = 3/5.

On the other hand, we observe of strong decrease of

the power law index for 2 ≤ δx ≤ 4 in the KH stable

regime, wich roughly follows the case without shear

flow, but is even lower.

The reason is that the imposed shear flow shown

in fig. (1) ideally leads to a poloidal rotation of the

island in both directions. The global poloidal rota-

tion of the plasma modifies the energy balance of the

system and in fact reduces the growth rate of the mag-

netic instability. The viscosity, the resistivity, and

also the nature of the mode can prohibit such an ideal

scenario. In fact, the plasma starts to rotate around

δx ∼ 2, but when the resonances are closer together,

given the weakness of the amplitude of flow Av and

the strong interaction between the growing islands,

the plasma poloidal rotation is locked.

4. Structure of the m=1 DTM and gen-
eration of a mean poloidal flow

In this section we focus on the nonlinear evolu-

tion of the m=1 DTM. Fig. 4 shows the time evolu-

tion of the kinetic and magnetic energy of the m =

{0, 1, 2, 3, 4, 12} modes for the case with δx = π/2,

η = 10−3, µ = 10−4, Lx = 2π, and Ly = 2π, where

KH is linearly stable and only the m=1 DTM is un-

stable. The m > 1 modes are stable in the linear
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Fig. 4 Energy of the poloidal modes versus time. δx =
π/2.
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Fig. 5 Snapshots of φ (Left) and ψ (Right) at t = 220τA.
δx = π/2.

phase (t < 160) and are destabilized in the quasilin-

ear phase, where the exponential growth of the modes

satisfies the relation γm = mγ1 (t < 400) . Contrary

to the v0 = 0 case where the m = 0 mode is not gener-

ated in the linear and quasilinear phases, the relation

γ0 = 2γ1 is held in those phases. We will see that the

generation of the m = 0 mode modifies the dynam-

ics of the system leading to the global reconnection in

between the resonances. In order to understand the

origin of this mode, it is instructive to observe the

snapshots of the electrostatic potential and the mag-

netic flux in the quasilinear phase. They are shown

in fig. (5). Note that the structures are not sym-

metric with respect to a reflection at x = 0 and/or

y = constant as discussed in the previous section. De-

spite an imposed poloidal shear flow, the islands do

not rotate poloidally. However, a symmetry is clearly

broken when compared with the v0 = 0 case. Indeed,

in the latter case, the m = 1 mode satisfies a symme-

try φ1(x,−y, t) = −φ1(x,+y, t) where

φ1(x, y, t) = φ̂1(x, t) cos(α1(x) + k1y) (5)

is the m = 1 mode, and φ̂1 and α1 are the amplitude

and phase of the mode respectively. In other words,

when v0 = 0, α1 is constant because of the symme-
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Fig. 6 Total magnetic flux just before and at the end of
the global reconnection process. δx = π/2. (Left)
t = 440τA. (Right) t = 470τA.

try. This is clearly false when v0 �= 0 as is seen in

fig. 5. In fact, a straightforward calculation shows

that whenever α1 is constant, the projection of the

Poisson brackets [φ1, ω1] on m = 0 mode is zero. for

the same reason the projection of [ψ1, j1] will also be

zero when v0 = 0. From the breaking of poloidal par-

ity as soon as v0 �= 0, it follows that the generation of

the m = 0 mode occurs at, of course, a growth rate

2γ1 through both the Reynolds and Maxwell stresses.

5. Impact of the shear flow on the
global reconnection process

When the islands are sufficiently closed together,

the global reconnection occurs regardless of a shear

flow, as is seen in fig. 6 where the nonlinear interac-

tion of the two magnetic islands deforms the DTM

structure (t = 440τA) and forces them to vanish pro-

gressively (t = 470τA). It is interesting to check if

this process is linked to the generation of the mean

velocity flow fluctuation ṽ0 = vtot

0 (x, t) − v0(x) in the

quasilinear phase of the m = 0 mode. A close exam-

ination of fig. (4) studied together with snapshots of

the magnetic flux shows a correlation. Indeed, the ψ̂1

component of the m = 1 mode starts to move radially

when the kinetic energy of the m = 0 mode, which

is linked to ṽ0, becomes more important than that of

the m = 1 mode (step 1), in the δx = π/2 case at

t ∼ 395. The global reconnection process can then

develop and occur in the time interval t ∈ [440, 480].

In fact, when the magnetic energy of the m = 0 mode

crosses that of the m = 1 mode at t ∼ 448 (step

2), the remaining islands are no longer topologically

linked to their initial resonant surface (see right snap-

shot of fig. (6)). At t = 478, the global reconnection

process is completed and the islands disappear (step

3). Inspection of the maps of the electrostatic poten-

tial just before the global reconnection (see fig. (7))

shows that the presence of the m = 0 mode, even if

it appears to be much more complex, does not sub-

stantially modify the plasma flow compared with the

case when v0 = 0, where typical butterfly-like struc-
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tures are easily identified. To clarify the role of the

generated poloidal mean flow vtot

0 (x, t), it is interest-

ing to focus on the time evolution of its structure.

Fig. (8) shows vtot

0 (x, t) at different times. The red

lines represent v0 = vtot

0 (x, 0) and the horizontal lines

show the position of the resonances. Initially, we ob-

serve that ṽ0 grows close to the resonances. Then,

(step 1) occurs roughly when vtot

0 (xir , t) has crossed

zero (about t = 385) or some Alfvén time after this

has happened (about t = 395). Finally, the graphs

t = 430τA and t = 440τA show that during the global

reconnection, which starts at (step 2), the mean veloc-

ity oscillates around zero in between the resonances,

approaching, in some sense, the case without imposed

shear flow. These observations show, first, that the

nonlinear destabilization of the DTM occurs once the

generated ṽ0(x, t) compensates v0 in the vicinity of

the resonant surface, and second, that the global re-
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connection process starts and occurs once the mean

velocity profile in between the islands oscillates around

zero.

It is instructive to follow the time evolution of

the mean magnetic field Btot

0 (x, t). Fig. (9) shows

Btot

0 (x, t) at different times during the global recon-

nection process, i.e. in between (step 2) and (step

3). First, we can see that until (step 2), the pro-

file and also the positions of the resonant surfaces

(Btot

0 (x, t) = 0) are roughly unchanged. This is fol-

lowed by a flattening of the profile in between the

resonant surfaces where the mean current decreases,

while in the vicinity of the resistive layers, the pro-

file becomes narrow signifying the generation of a

strong mean current (see snapshot at t = 440τA and

t = 450τA, respectively). This effect is amplified un-

til (step 3) occurs. It corresponds to the time when

Btot

0 (x, t) does not have a zero point at any location

(see t = 476τA snapshot). In other words, there is no

resonant surface anymore.

Let us consider also the case δx = 3π/4, keeping

all the other parameters identical to those used in the

case δx = π/2. The KH stable branch still exists and

shows the similar behaviour as the case with δx = π/2.

We find that the same behavior is observed. However,

the situation is more complex because island rotation

is initially involved in the dynamics. In fact the (step

1) event occurs at t = 660, when also the magnetic is-

lands stop to rotate poloidally and the (step 2) event

occurs at t = 1600, after a long period where the is-

lands do not move poloidally (see fig.( 10)). More-
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Fig. 10δx = 3π/4. Time evolution of the poloidal positions
of the center of the two islands

over, in this latter case, the global reconnection cor-

responds to a structure-driven nonlinear instability of

DTM characterized by an abrupt growth after a long-

time-scale evolution[17], such that, at t = 1610, the

islands reach the wall. In both cases, however, the

presence of the shear flow delays the time at which

global reconnection occurs. The delay is of about 15%

for δx = π/2 and 30% for δx = 3π/4. Note that for

δx = π/2 the delay strongly increases with the shear

flow amplitude reaching 116% for AV = 0.09 (just be-

low KHI threshold). From these preliminary results

we estimate that below AV = 0.01 the delay becomes

negligible. A much more systematic study should be

performed, but this preliminary work shows that con-

trol of the global reconnection process through control

of the shear flow in between the islands might be pos-

sible.

6. Conclusion
In this paper, we have presented a study of the

role of a shear flow in between magnetic islands on

the global magnetic reconnection processes. We first

have identified the different linear regimes which exist

when a shear flow is present in between two surfaces

where DTM develop. We have seen that according to

the distance between the resonant surfaces and the re-

sistivity of the plasma different regimes exist. When

the distance is larger than the typical magnetic shear

length, no global reconnection occurs and the islands

rotate[18]. In this paper, we did not focus on those

regimes. When it is of the order or smaller than the

typical shear length of the system, an island can be

locked or rotate linearly according to the value of δx.

Moreover, the system can be KH stable or unstable

according to the resistivity and, of course, to the am-

plitude of the shear flow. We have shown that, inde-

pendent of the regime (rotating island regime or not),

a breaking of symmetry linked to the presence of the

shear flow leads to the generation of a mean poloidal

flow at early times. We have shown that flow devel-

ops first in the vicinity of the resonant surfaces and

is at the origin of the radial displacement and desta-
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bilization of the DTM structure. We have found that

the presence of the shear flow delays the global re-

connection process, suggesting that its control might

be usefull for controlling the DTM. Further investiga-

tions are, however, necessary to precisely evaluate the

impact of the shear flow and its amplitude, and also

the impact of the KH instability in the low resistivity

regimes, on the global reconnection processes of the

double tearing mode.
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