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 Eigenvalue Spectrum of MHD Modes in Cylindrical Tokamak Plasmas  
with Small Resistivity 

Taro MATSUMOTO1 and Shinji TOKUDA2

1Fusion Research Development Directorate, Japan Atomic Energy Agency 
2Research Organization for Information Science and Technology 

For the understandings of the magnetohydrodynamic (MHD) characteristics in plasma, the spectrum of the 
resistive MHD modes are investigated in detail by solving the eigenvalue problem of the reduced MHD equations 
in cylindrical tokamak plasmas. The eigenvalues and eigenfunctions of the resistive MHD modes are clarified for 
small toroidal and poloidal mode numbers, and the discrete eigenvalues with imaginary part are categorized into 
several types by analyzing the behavior of their eigenfuctions. In particular, the dependence of the eigenvalue 
distribution in the real-imaginary space on the resistivity is studied for small resistivity regime by parallel 
computation. It is found that the characteristics of eigenvalue distribution and eigenfunction are changed even for 
small reduction of resistivity in small resistivity region. It is also found that the distribution structure of the 
eigenvalues is deformed with bifurcation of spectral curve. 
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1. Introduction 
For the understandings of the tokamak plasma 

dynamics, it is important to investigate and clarify the 
characteristics of the magnetohydrodynamic (MHD) 
spectrum, which is also particularly important from the 
viewpoint of the MHD spectroscopy. 

The characteristics of the MHD spectrum had been 
investigated by solving the eigenvalue problem based on 
the ideal and resistive MHD equations in cylindrical 
tokamak plasmas [1-2]. 

In the framework of the ideal MHD model, the 
eigenvalue problem of a MHD mode with the time 
dependence proportional to e t has one or some unstable 
discrete eigenvalues on the positive real axis and 
continuum spectrum on the imaginary axis. However, in 
the presence of finite plasma resistivity, it was found that 
the continuum spectrum is modified into purely damping 
spectrum on the negative real axis and discrete branches 
with finite imaginary and negative real components in the 
complex plane. 

Due to the limitation of computational resources in 
those days, the eigenvalue distribution had been analyzed 
for relatively large resistivity, and the eigenfunctions of 
some distinguished eigenvalues was clarified. 

Thus, in this paper, we have analyzed the eigenvalue 
distribution of cylindrical tokamak plasmas with 
asymptotically smaller resistivity than the previous works 
by using current computational resources. We have also 

clarified the eigenvalue distribution, its dependency on 
resistivity, and characteristics of eigenfunctions. 

This paper is organized as follows. In Section 2, we 
describe our simulation method to solve the MHD problem, 
including the reduced MHD equations, the matrix 
eigenvalue problem formulation, the computational 
approaches and the equilibrium parameters. In Section 3, 
the eigenvalue distribution and the eigenfunction profile 
for the m/n = 1/1 and 2/1 modes are described in detail. 
Here m and n are the poloidal and toroidal mode number, 
respectively. The dependency of the eigenvalue distribution 
on the plasma resistivity is also shown. Finally, a brief 
summary is given in Sec.4. 

2. Simulation Method 
2.1 Basic equations 

In this research, we employ a reduced MHD model 
where plasma can be described with the equations which 
do not include the fast magnetosonic wave but the shear 
Alfven wave. In this model, the dynamics of cylindrical 
plasma is described by the following reduced MHD 
equations for the vorticity U and the magnetic flux ,
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U ,        (3) 
J ,        (4) 

which are derived from full MHD equations on the 
assumption of a large aspect ratio, where t is the time,  is 
the electrostatic potential, J is the current density,  is the 
plasma resistivity and  is the viscosity. Here, a 
cylindrical coordinates (r, ,z) is used. The brackets in 
Eqs.(1) and (2) denote the linear part of the Poisson 
bracket, 
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The delta, , in Eqs.(3) and (4) denotes the Laplacian in 
the cylindrical coordinates, and 
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B0 is the toroidal magnetic field and 2 R0 is the 
longitudinal length in z direction. 

2.2 Formulation of matrix eigenvalue problem 
The formulation of matrix eigenvalue problem is 

obtained from Eqs.(1) and (2) as 

AUU AU AU AUJ

A U A A A J

Umn

mn

mn

Jmn

Umn

mn

mn

Jmn    (7) 

where AXY denotes the regular square matrix of the linear 
interaction,  is a eigenvalue, and Xmn is a eigenfuction of 
physical quantity such as the vorticity U, the magnetic 
flux , the electrostatic potential , and the current 
density J.

 By substituting Eqs.(3) and (4) into Eq.(7), an 
simplified set of equations, 
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is obtained, where -1 is the inversion of the  of the delta. 
Thus, the eigenvalue problem of a restive MHD mode in 
a cylindrical tokamak plasma is reduced to finding the 
eigenvalues and eigenfunctions of Eq.(8). 

2.3 Computational approach 

For the numerical calculation of Eq.(8), a eigenvalue 
problem code has been developed. Here, at first, EISPACK 
is chosen as the science library for a non-parallel 
computation in order to solve a two-dimensional matrix. 
The validation of this eigenvalue problem code was 
confirmed by comparing with the initial value code which 
was independently developed, from the viewpoint of the 
eigenvalue (the growth rate), the eigenfunction, and grid 
number dependency for the m/n = 1/1 and 2/1 unstable 
modes. 

The number of the radial grid points, imax, is changed 
from 512 to 16385. For the large radial grid points more 
than 1024, the eigenvalue problem code is parallelized, and 
ScaLAPACK scientific library is used to solve two 
dimensional block cyclic distributed matrix at each 
processor element. 

As the computational resources, we have used a 
workstation and SGI Altix3900 supercomputer with up to 
64 processor elements. The computational time for the 
same eigenvalue problem is significantly reduced due to 
the effect of changing processor element and scientific 
library, and parallelization. As a result, the computational 
time has successfully reduced by about 4000 times. 

From the viewpoint of numerical accuracy, it is found 
that in order to obtain precise eigenvalue distribution, good 
resolution should be kept over the whole radius. Thus, the 
uniform radial grid is used for the physical computation. 

2.4 Equilibrium parameters 
In this research, the safety factor profiles are assumed 
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Fig.1  Safety factor profile for (a) m = 1 mode and 
(b) m = 2 mode.  
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as shown in Fig.1(a) and (b) for m = 1 (m/n = 1/1) mode 
and m=2 (m/n = 2/1) mode, respectively. The resonant 
magnetic surface locates at almost half plasma radius for m
= 1 mode, and at approximately 0.7 of the plasma radius 
for m = 2 mode. For simplicity, the toroidal mode number 
is chosen to be 1. 

The plasma resistivity  is changed from 10-3 to 10-7.
The viscosity v is mostly assumed to be 0. However, it was 
confirmed that the eigenvalue distribution and the 
eigenfunction do not change significantly even for the 
viscosity equal to the plasma resistivity.

3. Characteristics of Eigenvalue Distribution and 
Eigenfunctions 
3.1 Outline of eigenvalue distribution 

At first, the macroscopic view of the eigenvalue 
distribution of the m = 1 mode is shown in Fig.2(a), where 

= 1.0 x 10-5, = 0, and imax = 512. It should be noted 
that the scale of the real axis is 100 times larger than that 
of the imaginary axis to emphasize overview of the 
eigenvalue distribution. There are a lot of eigenvalues on 
the real axis in its negative region. These discrete 
eigenvalues indicate purely damping modes [3]. 

On the other hand, there are discrete eigenvalues 

which situate off the real axis and have finite imaginary 
component and negative real component. These 
eigenvalues have a structure which is imaginarily 
symmetrical, as shown in Fig.2(b), where the scale of the 
real axis is almost the same to that of the imaginary axis. 
This structure has five branches as follows: one branch 
extending toward the origin, one branch extending toward 
the real axis, two branches towards the imaginary axis, 
and one branch connecting the above four branches. It is 
confirmed that these discrete eigenvalues do not change 
as the radial grid number increases while fixing physical 
parameters. 

There is also one unstable mode on the real axis in 
its positive region, that is, the m = 1 kink mode, which 
has the eigenvalue of approximately 4 x 10-2.

3.2 Eigenfunction of m = 1 mode
For the better understanding, the detailed figure of 

the eigenvalue distribution of the m=1 mode is described 
in Fig.3, where some characteristic eigenvalues are 
identified with denotations. 

The eigenfunctions of D8 and D9 on the branch to 
the origin are shown in Fig.4(a), with A0 of the internal 
kink mode. The eigenfunction is normalized so that the 
absolute maximum value is unity. It is found that these 
three modes are localized in the core plasma region, 
namely within the resonant magnetic surface of the m = 1 
mode shown in Fig.1(a). However, compared with A0, 
D8 and D9 have fluctuation component, in particular 
around the resonant surface. 

The eigenfunctions of D1, D2, and D3 on the 1st 
branch toward the imaginary axis are shown in Fig.4(b). 
It is found that these modes also localize in the core 
plasma region, much more inward than D8, D9, and A0. 
It is also found that, as departing from the imaginary axis, 
that is, as decreasing the real component of the 
eigenvalue, the eigenfunction comes to have 
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Fig.3  Detail figure of eigenvalue distribution of m
= 1 mode. Here, = 1.0 x 10-5, = 0, and imax

= 512.  
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Fig.2  Eigenvalue distribution of m =1 mode in (a) 
macroscopic scale and (b) microscopic scale. 
Here, = 1.0 x 10-5, = 0, and imax = 512.  
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short-wavelength oscillations. 
The eigenfunctions of B1, B2, and B3 on the 2nd 

branch toward the imaginary axis are shown in Fig.4(c). 
It is found that these modes localize in the edge plasma 
region, differently from the modes on the 1st branch 
toward the imaginary axis. It is also found that, as 
departing from the imaginary axis, the eigenfunction 
comes to have short-wavelength oscillations, similarly to 
the modes on the 1st branch toward the imaginary axis. 

The eigenfunction of D6, F1, F2, and B11 on the 
connecting branch are shown in Fig.4(d). It is found that 
F1 and F2 are generally symmetrical about the resonant 
surface of the m = 1 mode, that is, almost zero at the 
resonant surface and finite fluctuation in both core and 
edge plasma regions. D6 has short-wavelength 
oscillations in the core plasma region, and on the other 
hand, B12 has short-wavelength oscillations in the edge 
plasma region. 

The eigenfunction of B14 on the branch toward the 
real axis is shown in Fig.4(e), with A230 and A231 of the 
substantially damping modes. It is found that these three 
modes do not localize but expand uniformly in the radial 
direction with short-wavelength oscillations. 

3.3 Eigenfunction of m = 2 mode
In order to understand the characteristics of 

eigenvalue and eigenfunction of a different resistive 

MHD mode, m = 2 is chosen. The detailed figure of the 
eigenvalue distribution of the m = 2 mode is described in 
Fig.5. There are also discrete eigenvalues with imaginary 
component in the negative real region, which are 
identified with denotations, as well as Fig.3. The 
eigenvalue distribution has an imaginarily symmetrical 
structure which comprises five branches and is similar to 
that the m=1 mode although the 1st and 2nd branches 
toward the imaginary axis overlap near the imaginary 
axis.

There is one unstable mode, A0, on the real axis in 
its positive region, that is, the m = 2 tearing mode, which 
has the resonant magnetic surface at about r ~ 0.7 as 
shown in Fig.1(b) and has the eigenvalue of 
approximately 5 x 10-3.

The eigenfunctions of D11 and D12 on the branch to 
the origin are shown in Fig.6(a), with the A0 of the 
tearing mode. It is found that these modes have 
fluctuation component around the resonant surface as 
well as Fig.4(a).  

The eigenfunctions of D1, D2, and D3 on the 1st 
branch toward the imaginary axis are shown in Fig.6(b). 
It is found that these modes localize in the edge plasma 
region and are similar to B1 ~ B3 of the m=1 mode 
shown in Fig.4(c). On the other hand, the eigenfunctions 
of B1 ~ B5 on the 2nd branch toward the imaginary axis 
are shown in Fig.6(c). These modes are found to localize 
in the core plasma region and are similar to D1 ~D3 of 
the m=1 mode shown in Fig.4(b). 

The eigenfunctions of D7, F1, F2, and B25 on the 
connecting branch, and those of B33, A976 and A977 are 
shown in Fig.6(d) and (e), respectively. The 
characteristics of D7, F1, F2, and B25, which are 
generally symmetrical about the resonant surface, are 
similar to D6, F1, F2, and B11 of the m = 1 mode as 
shown in Fig.4(d). The characteristics of B33, A976 and 
A977, which expand uniformly in the radial direction, are 
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similar to B33, A976 and A977 of the m = 1 mode as 
shown in Fig.4(e)

3.4 Dependency on plasma resistivity.
Next, in order to investigate the dependency of 

eigenvalue distribution on the plasma resistivity, the 
eigenvalue problem of the m = 1 mode is solved for 
different plasma resistivity. Figure 7 shows the 
dependency of the eigenvalues distribution of the m = 1 
mode on the plasma resistivity. It is confirmed that, for a 
wide regime of the resistivity  from 1.0 x 10-4 to 1.5 x 
10-6, the shape and location of these curves (branches) is 
almost independent of the resistivity, although the density 
of the eigenvalues on these curves increases. 

However, for further small resistivity less than 1.5 x 
10-6, it is found that the characteristics of eigenvalue 
distribution and eigenfunction is changed even for small 
reduction of resistivity, as shown in Fig.7(d) where the 
distribution structure is deformed with bifurcation of 
spectral curve. 

The eigenvalue distribution of the m = 1 mode is 
also investigated with much larger radial grid number up 
to 16384, and this deformation of the eigenvalue 
distribution is also confirmed. 

Moreover, for the much smaller resistivity, less than 
1.0 x 10-6, further deformation with bifurcation is 
observed. We are investigating this behavior of the 
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edge-localized modes toward imaginary axis, 
(c) core-localized modes, (d) resonant surface 
symmetric modes, and (e) non-localized 
modes. Here, = 1.0 x 10-5, = 0, and imax = 
2048.  
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Fig.7 Eigenvalue distribution of m = 1 mode for (a) 
= 1.0 x 10-4, (b) = 2.0 x 10-5, (c) = 1.5 x 

10-6, and (d) = 1.0 x 10-6. Here, = 0, and 
imax is changed from 512 to 2048. 
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eigenvalue distribution in detail by massively parallel 
computation. 

4. Summary 
For understandings of the MHD spectrum in a 

cylindrical tokamak plasma the characteristics of the m = 1 
and m = 2 resistive MHD modes are investigated by 
solving an eigenvalue problem based on the reduced MHD 
model. The eigenvalue problem code was developed and 
was successfully parallelized for much small plasma 
resistivity. 

The eigenvalues and eigenfunctions are clarified in 
detail, in particular for the structure of eigenvalue 
distribution which discrete eigenvalue comprise. It is 
confirmed that eigenvalue distribution is almost 
independent of the resistivity larger than 10-6.

However, it is found that eigenvalue distribution is 
topologically deformed by reducing the resistivity to less 
than about 10-6. It is also found that the deformation is very 
sensitive to small change of the resistivity in this small 
resistivity region. 

As a future work, the WKBJ method will be applied 
to understand the strange phenomenon observed in Fig. 
7(d). It will also be confirmed the complex spectrum is 
sensitive to the method used to reduce the equations [4]. 
The eigenvalue and eigenfunction in the inner resistive 
layer will be also analyzed and will be compared with 
those obtained by the eigenvalue problem based on the 
resistive MHD equations. 
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