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Alfvén wave propagation in an initial value magnetohydrodynamic (MHD) simulation is reported.

The simulation result is compared with the theoretical shear Alfvén wave dispersion relation both in a

cylindrical geometry and in a toroidal geometry. Generation of the toroidicity induced Alfvén eigenmode

(TAE) frequency gap is observed in the presence of 1/R variation of the toroidal magnetic field. As a

preliminary test, excitation of TAE mode is simulated in the presence of energetic particles. A numerical

scheme employed in the simulation (the second order moment of the kinetic ions and electrons from

particle simulation replace the pressure evolution equation) is discussed.
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1. Introduction
Energetic particles can play important roles in

burning plasmas. For example, Toroidicity in-

duced Alfvén Eigenmodes (TAE)[1, 2] can be ex-

cited when energetic particles (e.g. fusion born al-

pha particles),[3, 4] resonate with the phase velocity

of the shear Alfvén wave within the frequency gap of

the Alfvén continuum. Another example where the

energetic particles play important roles is the stabi-

lization of sawtooth oscillations.[5, 6, 7] Long period

sawteeth accompanying the Alfvénic instabilities are

reported. In this work, employing a kinetic-fluid sim-

ulation model,[8] the Alfvénic instabilities are studied

in tokamak plasmas. The kinetic-fluid model incorpo-

rates all the particle dynamics through the pressure

tensor by taking the second order moment of the par-

ticle simulation while the electromagnetic field quanti-

ties are evolved in the fluid equations.[8] The kinetic-

fluid model retains the ion and electron wave-particle

interaction for both the bulk and the energetic particle

components. The model allows to study the interac-

tion of the energetic particles with thermal kinetic ions

and electrons in contrast to the conventional kinetic-

MHD hybrid models.[9, 10, 11, 12, 13] The advantage

of initial value approach is its application for nonlinear

simulation (and for studying resonant type instabili-

ties such as RTAE).[14, 15] Our final goal is to examine

the saturation mechanism of the instabilities incorpo-

rating geometrical effects correctly. We approach step

by step toward our long term goal. We start from

examining global Alfvén oscillation, continuum damp-

ing, and the generation of the TAE gap in the toroidal

geometry due to the magnetic field inhomogeneity (in

the MHD limit). We then incorporate kinetic ener-

getic particles to excite the instabilities. In Sec. 2 the

basic model for MHD simulation is discussed. Sec-
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tion 3 presents simulation results. We summarize this

work in Sec. 4.

2. Basic model for computation
A nonorthogonal, straight-field-line coordinate

system is employed in the present calculations, in

which ρ is the flux surface label, θ is the poloidal-

like angle, and ζ is the toroidal angle. The magnetic

field in a tokamak is given by

B = Beq + B̃, (1)

Beq = ∇ψeq × (q∇θ −∇ζ) , (2)

B̃ ≡ ∇× Ã = ∇× (−ψ∇ζ) = ∇ζ ×∇ψ, (3)

where ψeq (ρ) stands for the equilibrium poloidal mag-

netic flux and equilibrium poloidal current. Here,

ψ (ρ, θ, ζ) =
�

m/n ψm/n (ρ) cos (mθ + nζ) is the

poloidal flux function of the perturbed field, where m

and n are the poloidal and the toroidal mode numbers,

respectively. We denote the total poloidal magnetic

flux as ψt (ρ, θ, ζ) ≡ ψeq (ρ) + ψ (ρ, θ, ζ).

Numerical simulation has been conducted em-

ploying a reduced MHD formulation[16] which al-

lows simulating both cylindrical and toroidal geome-

tries. Toroidal geometry can enter the set of equa-

tions via metric elements obtained from an equilib-

rium solver.[17] The initial value simulation is con-

ducted by employing the FAR code.[18, 19] In our

study the reduced MHD equations[16] are solved for

the magnetic flux ψ, the toroidal component of the

vorticity U ζ , and the pressure P . The relevant equa-

tions are: the toroidal component of ideal Ohm’s Law,

∂ψ

∂t
= −R2 (v × B) · ∇ζ, (4)

the vorticity equation,

ρm
dU ζ

dt
=
1

c
R2

B · ∇Jζ +
�
∇R2 ×∇P

�
· ∇ζ,(5)
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In these equations, R stands for the major radius,

v ≡ R2∇ζ × ∇φ is the fluid velocity [φ (ρ, θ, ζ) =�
m/n φm/n (ρ) sin (mθ + nζ) is the stream function],

U ≡ ∇×
�
R2

v
�
is the vorticity, and J = (c/4π)∇×B

is the current density. The mass density is given by

ρm (we assume plasma to be incompressible and thus

ρm is constant in this paper). Superscripts denote the

contravariant components.

In the momentum balance (the vorticity equa-

tion), the pressure is given by

P = P⊥ (I− bb) + P�bb (6)

(the off diagonal tensor element is ignored for the mo-

ment)

P⊥j =

�
μBδfjd

3v, (7)

P�j =

�
mjv

2

�δfjd
3v. (8)

which is obtained by taking second order moment of

the particle simulation. Here, I is the identity matrix

and b = B/|B| is the unit vector along the magnetic

field line. Toroidal curvature effects are included in

the second term of Eq. (5). As suggested in Eqs. (7)

and (8), the second order moment of the kinetic parti-

cles from particle simulation replace the pressure evo-

lution equation. In Eqs. (7) and (8), the subscript j

stands for the particle species.

The MHD simulation in this study is based on

up-down symmetry of the equilibrium. Given a sine

function as an initial condition for the stream function

φ, the sine terms in ψ and the cosine terms in φ re-

main zero.[20] In the same manner the kinetic pressure

retains a parity of cosine.

The kinetic ions and electrons are given by gy-

rokinetic δf Vlasov equation[21]

∂δfj

∂t
= −Ẋ · ∇f0 − v̇�

∂f0

∂v�
. (9)

The particle positions are time advanced using a sec-

ond order Runge-Kutta-Gill method.[22]

Ẋ = v�
B

�

B�
�

+
c

qjB�
�

b × (μ∇B − qjE
�) (10)

v̇� = −
B

�

mjB�
�

· (μ∇B − qjE
�) (11)

where X is the position, v� is the velocity parallel

to the equilibrium magnetic field, μ = mv⊥
2/2B is

the magnetic moment. Here, qj is the charge of the

particles and c is the speed of light. For the field

quantities, B
� = B + ∇ ×

�
cmjv�/qj

�
b, and E

� =

−∇φ−c−1∂tÃ. Note that the B
� component contains

the conventional curvature drift term. Here, B�
� =

b ·B�.

In the δf simulation, the weight equation[23] car-

ries the information of the perturbed field (while the

trajectories are unperturbed ones for the linear simu-

lation). As an initial test we provide the simulation

with only passing particles (we set μ = 0 to avoid com-

plications such as particles lost at the plasma bound-

ary).

We incorporate the electron inertia term, the Hall

term, and the gyroviscous term into the Ohm’s law, as

manifested in Ref.[8]. In this paper, however, we focus

on incorporating the pressure closure relation Eqs. (7)

and (8).

3. Simulation results in the MHD limit
Parameters used in the calculations are as follows.

The q-profile (the safety factor) is taken as parabolic

q = 1.0+ ρ2. The equilibrium pressure profile has the

form of P = ψ2

eq. Major radius is given by R = 5 m

and the minor radius a = 1.25 m (thus the inverse

aspect ratio � = 1/4). A total of 200 equally spaced

mesh points was used in the radial direction. The

mode spectrum was selected asm/n = 1/1 andm/n =

2/1. Equations (4) and (5) are dissipationless. The

resistivity and the viscosity terms[19] are set to be

zero. In Eqs.(4) and (5), we provide φ with an initial

perturbation of a sine parity.[20]

In Fig.1 (a), shear Alfvén wave oscillation is tested

in a cylindrical limit. We set R = 1 in Eqs.(4) and (5).

In Fig.1, single Fourier mode of m = 1 and n = 1 is

taken. Here, time is normalized by ωA = vA/q0R0

which is the Alfvén frequency at the magnetic axis

(q0 = 1.0 is the safety factor and R0 is the major ra-

dius at the magnetic axis, respectively). The wave

equation (hyperbolic equation) and thus the shear

Alfvén wave dispersion relation can be obtained by

Eqs.(4) and (5) in the absence of the curvature driven

term. The Alfvén wave frequency measured at differ-

ent radial locations satisfies shear Alfvén wave disper-

sion relation ω = vAk�(ρ), where k� = ρ2/(1 + ρ2)

which is plotted onto Fig.1(b).

Figure 2 shows the shear Alfvén wave frequency

as a function of the radial coordinate ρ which is

equivalent to Fig.1 of Ref.[4]. Due to the 1/R vari-

ation of the toroidal magnetic field (R is the ma-

jor radius), the cylindrical Alfvén continuum (dashed

lines) breaks up and the frequency gap (or the fre-

quency forbidden band) appears within the range of

0.308 < ω/ωA < 0.366.

For the simulation in the toroidal geometry,

the numerical equilibrium from a Grad-Shafranov

solver[17] is employed. In Fig.3, shear Alfvén wave

oscillation is tested in a toroidal geometry in the ab-

sence of kinetic particles [the dynamical pressure term

in Eq.(5) is absent]. In Fig.3 (a), the m = 1 and the

m = 2 oscillations are synchronized each other and
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Fig. 1 Alfvén wave propagation in a cylindrical limit : (a)
shear Alfvén wave oscillation (of the perturbed flux
function ψ) at ρ = 0.25 and ρ = 0.50, (b) frequency
versus the radial location. Frequencies from the
simulation results match with the analytical pre-
diction.
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Fig. 2 Shear Alfvén frequency as a function of the radial
location. The dashed curves are the continuum fre-
quencies for the cylindrical limit, for m = 1 and
m = 2 modes. The solid lines are the continuum
frequency with the toroidal geometry effect. The
lower (upper) boundary of the upper (lower) curve
is at ω/ωA = 0.366 (ω/ωA = 0.308). The figure is
a recapitulation of Fig.1 of Ref.[4].

behave as one global mode.

The frequency spectrum in Fig.3(b) is obtained

by a Fourier transform of the time series in Fig.3(a).

In Fig.3 (b), we find the frequency peak at one of the

TAE gap boundaries (the lower boundary). In Fig.3

(c), the eigenmode of perturbed flux function ψ at

three different incidents are plotted, which reveals a

purely oscillatory behavior. These are good evidences

that the Alfvén wave in our simulation is responding

correctly to the toroidal geometry (and thus TAE).

In Fig.4, we show our preliminary simulation re-

sults incorporating Eqs.(7)-(11). We push energetic

particles. The TAE mode is excited in the pres-

ence of energetic particle ions. The energetic par-

ticles are given by Gaussian distribution with the

thermal velocity set to the Alfvén velocity. Here,

βα = 4πpα/B2

0
= 0.01 is taken (pα is the pressure

of the energetic particles). With the βα value and

assuming the equilibrium ion density to be 1020m−3,

the Larmor radius of a deuterium energetic particle

at the Alfvén velocity is given by 1.82% of the minor

radius. In this work, the background density gradient

is parametrized by a (∂ρ log neq) = −1.0. Here, neq

is the equilibrium density profile. The mode ampli-

tude of the ψ fluctuation experiences an exponential

growth of the envelope together with the oscillation at

the TAE frequency. The linear growth rate is given

by γ/ωA = 0.0027 while the frequency is given by

ω/ωA = 0.316. In Fig.4(b), the frequency peak re-

sides within the TAE gap. Figure 4(c) shows the TAE

eigenmode structure in the presence of the energetic

particles.

4. Summary and Discussions
In this work, we have discussed Alfvén wave prop-

agation in cylindrical and toroidal geometries. We

have observed the mode frequencies at the TAE gap

in a toroidal geometry. Compared to the majority of

the MHD simulation work[9, 10, 11, 12, 13, 18, 19]

which have focused on the instability with finite dis-

sipation in the system, the present work is unique in

that it reveals the Alfvén oscillation in an ideal MHD

limit (and by an initial value approach). Furthermore,

linear excitation of TAE mode is demonstrated in the

presence of energetic particles.

The advantage of the initial value approach is its

application for nonlinear simulation. The kinetic-fluid

model[8] can be a useful tool to study nonlinear sat-

uration mechanism of Alfvénic instabilities. To con-

serve energy in the nonlinear simulation, we need to

describe the the equilibrium distribution function in

terms of invariant canonical flux surfaces.[24, 25]

We recapitulate the limitations given in the

present paper. For the kinetic simulation, we did not

incorporate particle drifts (we set μ = 0) nor finite
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Fig. 3 (a) The Fourier components of the magnetic pertur-
bation ψ as a function of time. (b) The frequency
spectrum obtained from the time series of Fig.3(a).
The peak is found at one of the boundary of the
gap, ω/ωA = 0.308. (c) the TAE eigenmode struc-
ture in the absence of drive, which goes through
pure oscillation with time.
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Fig. 4 (a) The Fourier components of the magnetic pertur-
bation ψ as a function of time. (b) The frequency
spectrum obtained from the time series of Fig.4(a),
(c) the TAE eigenmode structure of ψ1/1 in the
presence of energetic particles.
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Larmor radius effects. The thermal ions and electrons

are absent as well (in the present paper).
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