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A direct numerical simulation of decaying, homogeneous and isotropic turbulence of the incompress-

ible Hall magnetohydrodynamic equations is carried out to clarify its statistical natures. Contributions

of small scales to the statistics are examined. It is shown that the probability density function (PDF)

of the enstrophy density is well characterized by the Gaussian distribution when the short wave number

coefficients are removed, even though the vortex field shows intermittent structures. It is also shown

that the local vortex structures are aligned to the magnetic field lines especially when the turbulent field

is under developing and small scales are going to be excited. The alignment is lost in the relaxation

process, suggesting the small scale current density field is less affected by the dissipations than the

vorticity field.
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1. Introduction
Plasma turbulence is commonly observed in vari-

ous phenomena such as solar coronas, solar winds and

fusion experiments. Since macroscopic behaviors of

plasma turbulence are well described by the one-fluid

magnetohydrodynamics (MHD) equations, it is a suit-

able model to initiate studies of plasma turbulence.

MHD turbulence is often characterized by a power-

law of energy spectra and/or intermittent structures,

as neural fluid turbulence is. While theories of MHD

turbulence by Iroshnikov and Kraichnan predict the

k−3/2 power law of the energy spectrum, observa-

tions of solar winds appear to show rather the clas-

sical k−5/3 Kolmogorov spectrum. (See Ref. [1] and

references there in.) The scaling property of the tur-

bulent energy spectra has been extensively studied by

means of direct numerical simulation (DNS), too. Al-

though the numerical works provide us invaluable in-

formation on turbulence, due to a limited resolution

achievable in numerical simulations, the energy spec-

trum obtained by a DNS of MHD turbulence should be

essentially scaled at the near-dissipation range, where

one-fluid MHD ordering may not necessarily be appro-

priate. Thus in order to study properties of turbulence

in such small scales, a more precise model is required.

An alternative and the simplest framework of the

plasma turbulence might be the Hall MHD equations,

in which the Hall term is added to the induction equa-

tion. The Hall term is quadratic to the magnetic

field and varies some aspects of (non-Hall) MHD tur-

bulence. For example, we expect emergence of the

Whistler-Alfvén waves, in stead of the Alfvén waves

in non-Hall MHD turbulence [4]. Nonlinear interac-

tions in the non-Hall MHD turbulence is often under-

stood by the collisions of Alfvén waves which propa-
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gate along the magnetic field lines, and also by slower

dynamics in the direction perpendicular to the mag-

netic field lines [5–7]. In the Hall MHD turbulence,

the interaction time scales and frequency of interac-

tions are altered because high wave number Whistler-

Alfvén waves propagate much faster than the Alfvén

waves. Then the power spectra and local structures

in the Hall MHD turbulence are modified from those

of non-Hall MHD turbulence.

In the previous article [3], we have reported

some spectral properties of the Hall MHD turbu-

lence through the direct comparison with the non-

Hall MHD turbulence of the same dissipative coeffi-

cients and the same initial condition. In this arti-

cle we report results of further numerical analyses on

the Hall MHD turbulence. Our interests in this arti-

cle are vortex structures and their statistical proper-

ties with/without small scale Fourier coefficients, be-

cause such analyses on scale separations can provide

basic information to model the equations in terms of

so called eddy viscosity and/or eddy currents, which

we often require for various numerical studies. This

paper is organized as follows. In Sec.2, a direct numer-

ical simulation of the Hall MHD equations is carried

out. Basic information of the simulation and some

aspects of the numerical simulations are shown. In

Sec.3, statistical properties of the turbulent field are

reported. Summary is presented in Sec.4.

2. Direct numerical simulation
A DNS of the decaying, homogeneous and

isotropic turbulence of the incompressible Hall MHD

equations is carried out in this section. The incom-

pressible Hall MHD equations are described as

∂Vi

∂t
= −

∂

∂xj
(ViVj − BiBj)
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−
∂
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p +

1

2
BiBi

�
+ ν

∂2Vi

∂xj∂xj
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∂Vj

∂xj
= 0, (2)

∂Bi

∂t
= �ijk

∂

∂xj
[

�kmn (Vm − �jm)Bn − ηjk] , (3)

ji = �ijk
∂Bk

∂xj
, (4)

where Vi, Bi, ji are the i-th component of the velocity

field vector V , the magnetic field vector B, and the

current density vector j, respectively. We also intro-

duce the vorticity vector field ω, of which i-th compo-

nent is given as ωi = �ijk∂Vk/∂xj . The symbols �ijk,

ν, η are the Eddington’s anti-symmetric tensor, the

viscosity and the resistivity.

The equations (1)-(4) are solved numerically by

the pseudo-spectral method and the Runge-Kutta-

Gill scheme under the triple periodic boundary con-

dition over (2π)
3

box. The number of grid points is

N3 = 5123. The aliasing errors in the pseudo-spectral

computations are removed by the 2/3-truncation. Be-

cause of the 2/3-truncation, the maximum wave num-

ber in this simulation is limited to kmax = 170. The

Hall parameter, the viscosity and the resistivity are

set as � = 0.05, ν = η = 2 × 10−3, respectively. The

initial conditions are given by the energy spectrum

Eα(k) ∝ k4 exp
�
−2k2/k2

0

�
(k0 = 2 is given here) and

the random phases for both the velocity vector field

and the magnetic vector field.

In this section we see some averaged quantities

and energy spectra. (A few of them have been shown

in the previous work [3]. We see again for the sake

of understanding the nature of turbulence better.)

In Fig.1(a), time evolutions of the kinetic energy

EK = �ViVi� /2 (solid line) and the magnetic energy

EM = �BiBi� /2 (dashed line) are shown. The sym-

bol �·� denotes the volume average. In Fig.1(a), the

total energy ET = EK + EM (dotted line) decays

monotonically, while each of EK and EM does not

behave monotonically because EK and EM exchange

their energies each other. In Fig.1(b), time evolutions

of the enstrophy Q = �ωiωi� /2 and the total current

J = �jiji� /2 are shown. Both Q and J are peaked

at t = T0 � 0.5. Hereafter we make use of the time

stamp T0, and study the turbulent field at t = T0/2,

T0, 2T0, 3T0 and 4T0 in this article. In Fig.1(c), the

Taylor’s micro-scale Reynolds number RV
λ for the ve-

locity field and its counter part to the magnetic field

RM
λ� are shown. At t = T0, R

V
λ � 89 and RM

λ� � 93. A

difference between the two Reynolds numbers is clear

after t = T0. The magnetic Reynolds number RM
λ� is

almost constant for t ≥ T0, while RV
λ keeps decaying

slowly.

In Figs.2(a) and (b), the kinetic energy spectrum
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Fig. 1 Time evolutions of (a)EK , EM , EK = EK + EM ,
(b)Q and J , and (c)RV

λ , RM

λ

EK(k) and the magnetic energy spectrum EM (k) are

shown at t = T0/2, T0, 2T0, 3T0 and 4T0, respec-

tively. The former appears to be scaled by k−5/3 (the

solid line), while the latter appears to be scaled by

k−7/3 rather than by k−5/3. (Refer to Ref. [2, 3] on

the examination of the scaling indices by the compen-

sated energy spectra.) The scaling properties of the

two spectra look almost unchanged after t = T0. In

Fig.2(c), the transfer functions of the kinetic energy

and the magnetic energy, TK and TM respectively, are

plotted at t = T0. The two transfer functions are de-

fined as

TK(k) =
�
[k]

�Vi(k)
∗ �Ai(k), (5)

�Ai(k) = F

�
−

∂

∂xj
(ViVj −BiBj)
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Fig. 2 Time evolutions of (a)the kinetic energy spec-
trum EK(k) and (b)the magnetic energy spectrum
EM (k). (c)The energy transfer functions for the
kinetic energy TK(k) and for the magnetic energy
TM (k) at t = T0.

−
∂

∂xi

�
p+

1

2
BjBj

��
, (6)

and

TM (k) =
�
[k]

�Bi(k)
∗ �Ci(k), (7)

�Ci(k) = F [�ijk

∂

∂xj
{�kmn (Vm − �jm)Bn}

�
, (8)

where the symbols
�

[k], F [] and ∗ denote the shell

average over the wave number vector k, the Fourier

transform, and the complex conjugate, respectively.

The variables with �· are the Fourier coefficients. Here
we note characteristics of the two transfer functions

TK(k) and TM (k) briefly. The kinetic energy transfer

function TK(k) is negative at k < 20 and positive at

k > 20. The profile of TK(k), negative at low wave

numbers and positive in large wave numbers, is quite

typical when the forward energy transfer is dominant.

On the other hand, the magnetic energy transfer func-

tion TM (k) changes its sign twice. It is positive at

the two regions, k < 3 and k > 20, and negative

at 3 ≤ k ≤ 20. There should be the inverse energy

transfer toward the first region k < 3. The region

3 ≤ k ≤ 20 is considered to be the source of the en-

ergy to the other two regions k < 3 and k > 20.

In Fig.3(a), isosurfaces of the enstrophy density

Ω2 = ωiωi/2 are shown. The threshold of the isosur-

faces is four times of the deviation above the mean

value of Ω2. In Fig.3(b), isosurfaces of the current

density I2 = jiji/2 are drawn by the threshold of four

times of the deviation above the mean value. The

isosurfaces of both Ω2 and I2 exhibit sheet-like struc-

tures, as they do in the non-Hall MHD turbulence.

However, large-scale structures of the two quantities

(especially the enstrophy density) are rather tubular

in the Hall MHD turbulence. In fact, the isosurfaces

of the two quantities which are drawn only with their

Fourier coefficients k ≤ 32, in Fig.3(c), are either elon-

gated ellipsoids or tubes. (The magnetic field lines are

also drawn there.) From these observations, we con-

sider that some basic properties of the Hall MHD tur-

bulence are different between large and small scales.

For a convenience, we assume k = 32 as a wave num-

ber to distinguish the large and small scales in this

article. Although we do not have a theory to deter-

mine the threshold wave number as k = 32 uniquely,

it is one of a typical scale by which we can find clear

change of spatial structures in the processes of visu-

alizations. Hereafter we study turbulent statistics by

the use of the low-pass/high-pass filters with k = 32

cut-off. For a convenience, we refer to the data with

the all Fourier coefficients as the full resolution and

the data only with k ≤ 32 Fourier coefficients as the

limited resolution.

3. Statistics w/wo high wave number
coefficients
In this section, we study of some statistics with

high wave number Fourier coefficients (the full reso-

lution statistics) and without them (the limited res-

olution statistics). In Fig.4, the probability density

function (PDF) of the I2 at t = T0 is shown both

for the full resolution (solid line) and the limited res-

olution(dashed line), in with the abscissa (a)I2 and

(b)I. While the PDFs of both the full resolution and

the limited resolution are concave up in Fig.4(a), they

have straight tails in Fig.4(b). It indicates

P (I2) ∝ exp (−I) (9)
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(a)
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(c)

Fig. 3 Visualization of turbulent field. The isosurfaces of
(a)the enstorphy density, and (b)the current den-
sity for the entire computational box. (c)The iso-
surfaces of the enstorphy density and the current
density, and the magnetic field lines of only k ≤ 32
Fourier coefficients are drawn.

at large I2, whether the resolution is full or limited.

In Fig.5, the PDFs of Ω2 of the full resolution and

the limited resolution are shown with the abscissa of

(a)Ω2 and (b)Ω. In contrast to the PDFs of I2, we

find that the PDF of the full resolution is

P (Ω2) ∝ exp (−Ω) (10)
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Fig. 4 The PDF of the current density I2 = jiji/2. The
abscissa is I2 in (a) and I in (b).

while the PDF of the limited resolution appears

P (Ω2) ∝ exp
�
−Ω2

�
. (11)

It can be interesting because the PDF of the large scale

vortices looks that of a simple Gaussian random field

even though they apparently have intermittent vortex

structures in Fig.3(c). It is also interesting to find

differences between I2 and Ω2, because the difference

may come from the quadratic nature of the Hall term

to the magnetic field, which we miss in the non-Hall

MHD equations. In the non-Hall MHD equations, the

current density field j and the vorticity field w are

closely related with each other through the Elsässer

variables V ± B, while they are not in the Hall MHD

equations due to the quadratic nature.

Next, we study the alignment of the local vortex

structures and the magnetic field lines which is re-

ported first in Ref. [3]. As in the reference, there is a

tendency that the magnetic field lines are tangential to

the isosurfaces of the enstrophy density. The tendency

is investigated here more quantitatively by means of

the PDF of the angles between the surface orientation

and the magnetic field lines. We can characterize the

orientation normal to the surfaces of Ω2 as the gradi-

ent of quantity. The PDF of the angle between the

magnetic field lines and the gradient vector,

θB,∇Ω2 = cos−1

�
B · (∇Ω2)

|B| |(∇Ω2)|

�
(12)

is shown In Fig.6 for (a)the full resolution and (b)
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Fig. 5 The PDF of the enstrophy density Ω2 = ωiωi/2.
The abscissa is Ω2 in (a) and Ω in (b).

for the limited resolution. In Fig.6(a), the PDF at

θ � π/2 becomes the largest at t = T0/2, in the mid

time of the turbulence evolution, and it becomes small

rapidly after that. That is, the alignment of the mag-

netic field lines and the vortex structures are achieved

when the turbulence is developing. In Fig.6(b), the

PDF for the limited resolution are shown. Though

the basic profile of the PDF is similar between the

full resolution and the limited resolution, the peaks of

the PDFs at the angle π/2 become less sharp without

k > 32 coefficients. Our current understanding is that

the alignment is contributed mainly by the small scale

structures, which are excited in the course of develop-

ment of the turbulence, and that the alignment is lost

when the small scales are dissipated away quickly in

the relaxation process.

When we turn our eyes to the relaxation process

of t ≥ T0, it is natural to consider about the helicity,

since it has been considered that the conservation of

the helicity can play a key role in the relaxation pro-

cess in studies of non-Hall MHD turbulence. In the

Hall MHD equations, we have three quantities to be

conserved in the ideal limit, the total energy

ET =
1

2
�ViVi�+

1

2
�BiBi� , (13)

the magnetic helicity

Hm =
1

2
�AiBi� (14)

where Ai is the vector potential to give the magnetic
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Fig. 6 The angles between the gradient of the enstrophy
density and the magnetic field lines of (a) the full
resolution and (b) the limited resolution.

field by Bi = �ijk∂Ak/∂xj, and the hybrid helicity

K =
1

2
�(Bi + �ωi) (Ai + �Vi)� . (15)

In Fig.7, the time evolutions of the three quantities

ET , Hm and K are shown. The total energy ET , be-

ing multiplied by 1/5 in the figure so that the it can be

easily compared to the other quantities, decays quite

rapidly while the other two quantities vary relatively

slowly. It is reasonable to attribute the difference of

the decay rates to their orders of the derivatives, in

accordance with a typical selective decay in non-Hall

MHD turbulence. Though all the three quantities are

not conserved for finite dissipations, their behaviors

might give us some insights to understand the statis-

tics in Figs.4, 5 and 6. The conservation of Hm in

the ideal limit constrains the behaviors of the mag-

netic field. The slower decay ofHm than ET implicitly

means that the current density field j is less sensitive

than the vorticity field ω to the dissipations thanks to

the constraint. It is consistent with the behaviors of

RV
λ and RM

λ� in Fig.1(c), in which the former decays

after t ≥ T0 while the latter stays almost constant,

showing that the small scales in the velocity field are

dissipated while those of the magnetic field are kept.

It might be a consequence of the insensitive nature

that the current density field shows more intermittent

structures as in Fig.4(b) than the vorticity field in

Fig.5(b), although this remains as a tentative conjec-
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ture to be studied. The roles of the helicity and the

hybrid helicity in formation/relaxation of local struc-

tures should be studied further in next works.

4. Summary
Statistics in Hall MHD turbulence are investi-

gated by making use of the low-pass filter with k = 32

cut-off wave number. It is found that vortex structures

in the large scales are well characterized by the Gaus-

sian distribution in spite of their intermittent struc-

tures. It may help us to construct an eddy viscos-

ity model by making use of some theories for random

field. On the other hand, the current density field

represents more intermittent statistics than the vor-

ticity field, so that we need further analyses about

it. We have also found that the local vortex struc-

tures, especially of the small scales, are aligned to the

magnetic field lines when the turbulence level is under

developing. The alignment is lost in the decaying (re-

laxation) process, showing dominance of the turbulent

field by the helicity and the hybrid helicity. In order to

construct numerical models for the magnetic field, we

need to take the influences of the helicity conservation

effectively.
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