
Model Data Fusion: developing Bayesian inversion to constrain
equilibrium and mode structure

M. J. Hole, G. von Nessi, J. Bertram, J. Svensson †, L. C. Appel ‡, B. D. Blackwell, R. L. Dewar and
J. Howard

Research School of Physics and Engineering, Australian National University, ACT 0200, Australia.
†Max Planck Institute for Plasma Physics, Teilinstitut Greifswald, Germany.

‡Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX143DB, UK.

March 1, 2010

Recently, a new probabilistic “data fusion” framework based on Bayesian principles has been developed on
JET and W7-AS. The Bayesian analysis framework folds in uncertainties and inter-dependencies in the diagnostic
data and signal forward-models, together with prior knowledge of the state of the plasma, to yield predictions of
internal magnetic structure. A feature of the framework, known as MINERVA (J. Svensson, A. Werner, Plasma
Physics and Controlled Fusion 50, 085022, 2008), is the inference of magnetic flux surfaces without the use of a
force balance model. We discuss results from a new project to develop Bayesian inversion tools that aim to (1)
distinguish between competing equilibrium theories, which capture different physics, using the MAST spherical
tokamak; and (2) test the predictions of MHD theory, particularly mode structure, using the H-1 Heliac.
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1. Introduction
With the advent of large scale neutral beam heat-

ing, magnetically confined fusion plasmas have drifted
from the simple picture of ideal magnetohydrodynamics
(MHD), which describes the plasma as a single, station-
ary, isotropic Maxwellian fluid. Due principally to neu-
tral beam heating, several tokamak experiments now boast
plasma toroidal rotation speeds that approach the thermal
Mach speed and have significant stored energy residing in
the energetic particle population produced by charge ex-
change with thermals. Motivated by these developments, a
range of new descriptions have emerged that include ther-
mal rotation [1] as well as energetic particles [2]. De-
spite this, ideal MHD is still the foundation of nearly all
analysis. Detailed magnetic reconstruction based on this
treatment ignores the energetic complexity of the plasma,
and can result in model-data inconsistencies, such as ther-
mal pressure profiles which are inconsistent with the total
stored kinetic energy of the plasma.

A parallel development has been the improvement in
the diversity, accuracy and resolution of plasma diagnos-
tics. Interpretation, however, often requires a detailed
knowledge of the plasma equilibrium. For example, infer-
ence of the toroidal current profile jφ(ψ) from line of sight
measurements of the polarization angle requires a knowl-
edge of the poloidal flux ψ across the plasma. Formally,
diagnostic forward functions relate the vector of plasma
parameters I to the measurement vector D. For a linear
system, such as toroidal current inference in a double null
configuration, I and D are normally related through a re-
sponse matrixMwith additional contributions C, such that
D =MI+C. Inference involves inverting this relationship
to give plasma parameters I that are consistent with the
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data D. A widespread technique used is least-square fit-
ting, in which prior assumptions are included via a penalty
term in the fit.

The confluence of higher performance plasmas with
diagnostic development has however led to a dichotomy:
data is often inconsistent with ideal MHD equilibria, some-
times misleading scientists to propose new phenomena to
describe data “artifacts”. An example is filamentation of
flux surfaces in the Rijhnuizen Tokamak, which was in-
ferred from fluctuations in measurements of electron tem-
perature [3]. Subsequent analysis of the Thomson scatter-
ing detection chain revealed that with the correct photo-
electron statistics and 2D instrument profile, similar struc-
tures could arise from noise. [4, 5].

Recently, a new integrated data-modelling approach
for inference of fusion plasma parameters has emerged
which offers a natural framework with which to resolve ar-
tifacts from model behaviour. In contrast to least square fit-
ting, the Bayesian approach to inference in fusion plasmas,
developed by multiple authors, [6, 7, 8, 9, 10, 11, 12, 13]
involves the specification of an initial prior probability dis-
tribution function (pdf), P(I), which is then updated by
taking into account information that the measurements pro-
vide through the likelihood pdf P(D|I). The result is the
posterior distribution P(I|D) given by Bayes’ formula

P(I|D) = P(D|I)P(I)/P(D). (1)

The advantage of the Bayesian approach over traditional
inversion techniques is two-fold: (i) prior knowledge, in-
cluding known parameter inter-dependencies is made ex-
plicit, and (ii) as the formulation is probabilistic, random
errors, systematic uncertainties and instrumental bias are
integral part of the analysis rather than an afterthought.

In this work we present initial results of forward mod-
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els of current tomography in the Mega Ampere Spheri-
cal Tokamak (MAST), we formulate Bayesian inference
of force balance, and we identify plans for inference of
mode structure in the H1 heliac. The paper is structured
as follows: Sec. 2 briefly outlines the MAST experiment
and present first results for Bayesian inference of poloidal
flux and current profiles from MAST motional Stark effect
(MSE) measurements. Section 3 outlines a Bayesian in-
ference framework for force balance, synthesizes a pres-
sure profile posterior given the flux surfaces from MSE
and Thomson Scattering data, and computes an estimate
of f (ψ) f (ψ), with f (ψ) the toroidal flux function. Using
this, we are able to quantify the impact of poloidal cur-
rents on the equilibrium configuration. Section 4 outlines
a Bayesian inference model for mode structure and devel-
ops a plasma model to compute candidate modes in the H-1
heliac. Finally, Sec. 5 contains concluding remarks.

2. MAST and current tomography
The Mega Ampere Spherical Tokamak, which first

published physics results in 2001 [14], is one of the world’s
largest spherical tokamaks. While MAST physics and
technology development have contributed across a broad
range of fusion science [15, 16], two properties of MAST
help motivate this research: high performance, and pre-
cision diagnostics. It is the combination of these proper-
ties in a spherical tokamak, which has a relatively weak
toroidal field and therefore large sensitivity to poloidal
currents compared to conventional tokamaks, which helps
motivate selection of MAST to develop Bayesian inference
for force balance.

Recently, both MAST neutral beam injectors have
been upgraded to 3.8 MW. This has enabled plasma per-
formance to be routinely lifted above βn ≈ 5, which was
reported in 2005 [17]. MAST is equipped with an array of
precision diagnostics [16], including a high spatial resolu-
tion, single-time point, ruby Thomson Scattering system, a
multi-time point Nd:YAG Thomson Scattering system with
a coarser spatial resolution, Motional Stark effect, Charge
Exchange Recombination, and fast magnetics [18].

Our development of Bayesian inference of the cur-
rent profile on MAST closely follows the seminal work
of Svensson and Werner [11]. In that work, the plasma
was represented as a grid of toroidal axisymmetric current
beams, each with rectangular cross-section and each beam
carrying a uniform current density. In MAST, we have
placed these beams so as to fill-out the entire limiter re-
gion as depicted in Figure 1. The magnetic field generated
is a summation of Biot-Savart’s law over current beams.

A key advantage to using a series of current beams
with finite cross-section to model the plasma current (as
opposed to a filamentary model) is that the semi-analytic
expressions for the corresponding magnetic field and vec-
tor potential have no singularities, even at points within the
current beam itself. Indeed, if one were to use filaments to
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Figure 1: Plasma beam cross-sections fill out the MAST limiter
region in the plasma beam current model. Pick-up coils
are shown as solid bars near the poloidal flux coils, flux
loops as a “*” on both the centre column and poloidal
field coils, and MSE as “*” points on a chord through the
midplane.

model the plasma current, there would be many singular
points in the calculated magnetic field within the plasma
that would make subsequent flux-surface calculations dif-
ficult and somewhat questionable [11].

2.1 Diagnostic Signals
In axisymmetric devices, there exists a direct relation

between the poloidal flux, ψ, and the toroidal component
of the current vector. Specifically, defining the cylindrical
coordinate system (R, Z, φ) with R the major axis, Z the ver-
tical axis and φ the geometric toroidal angle, the following
relation holds:

ψ(R, Z) =


B · dS =


A · dl = 2πRAφ, (2)
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where Aφ is related to the toroidal current jφ via Biot-
Savart’s law:

Aφ(r) =
µ0

4π


jφ(r)
|r − r| dV . (3)

and where µ0 is the permeability of free-space. In Eq. (3) r
is the position vector r = ReR+Zez+φeφ, which eR, eZ , and
eφ unit vectors in the R, Z and φ directions, respectively. By
inspection, the AR and AZ components due to jφ are zero.
Taking the curl of Eq. (2) and utilizing B = ∇ × A it can
be shown

BR = − 1
R
∂ψ

∂Z
, (4)

BZ =
1
R
∂ψ

∂R
, (5)

where BR, BZ and Bφ are the components of the magnetic
field. From Eqs. (2)–(5), it can be seen that if jφ is repre-
sented by an axisymmetric beam of rectangular cross sec-
tion and uniform current distribution, then ψ, BR and BZ

will vary linearly with respect to the total current going
through that beam. The importance of this will become
clear in the next two paragraphs.

The main diagnostics used to infer the current distri-
bution are pickup coils Pi, full flux loops Fi and the polar-
isation angle γi of the emitted light from neutrally excited
species during neutral beam injection due to the motional
Stark effect (MSE). The responses of these diagnostics to
a current running through a beam, I, is given by

Pi(R, Z; I) = BR(R, Z; I) cos(θi) + BZ(R, Z; I) sin(θi), (6)

Fi(R, Z; I) = ψ(R, Z; I), (7)

tan γi(R, Z; I) =
A0BZ(R, Z; I) + A1BR(R, Z; I) + A2Bφ(R, Z; I)
A3BZ(R, Z; I) + A4BR(R, Z; I) + A5Bφ(R, Z; I)

, (8)

where θi is the angle between a pickup coil’s normal and
the outboard midplane, and A0, A1, A2, A3, A4 and A5 are
constants for the particular MSE viewing geometry. The
notation “;” denotes that the subsequent argument, in this
case current I, is held constant. (By convention, the nota-
tion “|” is reserved for probability theory.) Both Pi and Fi

have a linear dependence on ψ, BR and BZ and hence they
are linearly dependent on the total current going through
each beam of the current plasma beam model. The func-
tion tan γi has a non-linear dependence on BR and BZ ; how-
ever given that both neutral beams and MSE viewing optics
all are on the mid-plane for MAST, A1, A2, A3, A4 are all
approximately zero. The following approximation is hence
used for tan γi:

tan γ(R, Z; I) =
A0BZ(R, Z; I) + A1BR(R, Z; I)

A5Bφ(R, Z; I)
. (9)

where we have retained the term A1. Since the current
beam plasma model does not take into account poloidal
currents, vacuum field values for Bφ are used in Eq. (9) to
perform the current tomography calculations. The correc-
tion to Bφ due to poloidal currents is investigated in Sec.
3.1.

Thus, given that Pi(R, Z; I), Fi(R, Z; I) and
tan γi(R, Z; I) all have a linear dependence on the
current flowing through I, one may write out a generalized
prediction vector P for all the pickup coils, flux loops and
polarization angles, as

P =MI + C. (10)

Here, M is the response matrix of the current vector I cor-
responding to all the plasma beams modelling the plasma,
and C represents various other contributions to the predic-
tion vector, which are constant relative to I.

2.2 CAR Prior and Bayesian Inference
In [11], Svennson and Werner used a Conditional

Auto-regressive (CAR) prior to perform Bayesian infer-
ence for the current beam model of the plasma, and this
is the model adopted in this paper. The advantage of this
choice in prior is that plasma beam currents are correlated
to each other but in a spatially localised way. Thus, this
prior has the effect of enforcing some smoothness between
adjacent current beams, while minimising spatially long
ranged effects due to manipulating the current in a par-
ticular beam. This is desirable in that such behaviour al-
lows one to get a clear relation between individual cur-
rent beams and diagnostic measurements. To construct this
prior distribution, the following distribution over all cur-
rent beams is considered

P(I) ∝ exp

−1

2
IT QI


, (11)

where the superscript T denotes the transpose, and Q is
the precision matrix. Equation (11) is proportional to a
zero-mean normal distribution, and so the conditional dis-
tribution of one current Ii given all others I−i satisfies

p(Ii|I−i) ∝ exp

(Ii −


j

βi jI j)2/(2τi)

 , (12)

for some βi j. Matching terms between Eq. (11) and Eq.
(12) shows that βii = 0, βi j = −Qi j/Qii and τi = 1/Qii.
Moreover, it turns out the symmetry of Q implies that
βi jτ j = β jiτi [19]. We have set all variances equal. By
setting βi j to correspond to Ii having a mean that is simply
the average of the currents of the beams horizontally and
vertically adjacent to it, the precision matrix takes the form

Q =
1
τ


1 − 1

4
W

, (13)

where 1
¯

is the identity matrix and W the adjacency ma-
trix with Wi j = 1 if i and j are horizontally or vertically
adjacent to current element Ii, and Wi j = 0 otherwise.

From Eq. (12), it can be seen that the CAR prior is
constructed by exactly specifying the conditional distribu-
tion p(Ii|I−i) and subsequently transforming this expression
into a zero-mean normal distribution for I. CAR distribu-
tions are discussed in detail in [19] and have the advantage
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that hidden parameter inter-dependencies associated with
direct manipulation of the covariance matrix in a normal
distribution are totally avoided in the CAR construction
(see [11] for a discussion on this point).

We have used a normal distribution for every diagnos-
tic measurement D as it is the least informative, or max-
imum entropy distribution when only the standard devia-
tion (“error”) and mean value is available for each diag-
nostic signal [20], as is the case for MAST diagnostic data
signals. Under this assumption, the likelihood P(D|I) be-
comes a multivariate normal distribution of the data D, and
is given explicitly by

p(D|I) =
1

(2π)Nd/2|ΣD|1/2 exp

−1

2
(P − D)TΣ−1(P − D)


(14)

where ND is the number of measurements, and Σ is the co-
variance matrix of the measurements, which is determined
experimentally. Finally, substituting Eq. (11) and Eq. (14)
into Bayes’ formula shows that the posterior distribution
p(I|D) satisfies the following relation:

p(I|D) ∝ exp

−(P − D)TΣ−1(P − D) − IT QI


. (15)

Recalling Eq. (10), it is known that P is linearly de-
pendent on I; and thus, it can be shown that Eq. (15)
is proportional to a multivariate normal distribution in I
(see [11] for details). Hence, p(I|D) has a simple analytic
representation that be directly analysed without resorting
to using Markov-chain Monte-Carlo (MCMC) algorithms.
The speed afforded by the analytic nature of the posterior
makes this analysis amenable to real-time plasma control
applications.

With the maximum and variance of p(I|D) deter-
mined, Eqs. (2) and (3) can be used to construct the
poloidal flux surfaces corresponding to the contours of
ψ(R, Z). Figure 2 shows poloidal flux surfaces from MAST
discharge # 22254 at 320 ms using pickup coils, flux loops
and MSE. Discharge #22254 is a deuterium plasma in a
double-null configuration, which was heated with 3.1 MW
of neutral beam heating and a plasma current of Ip =

800 kA. The time of 320ms is analysed here as it corre-
sponds to a firing of the high-resolution TS system closest
to the peak β for this shot. The figure shows a contour
plot of ψ(R, Z) which is calculated from I corresponding
to the maximum of the p(I|D) distribution. Overlaid on
the contours are traces of the poloidal field coil cross sec-
tions and conducting surface cross sections for the MAST
experiment. The last closed flux surface calculated from
the plasma beam model is outlined in bold with the corre-
sponding EFIT last closed flux surface overlaid in purple
for comparison. One outcome of the Bayesian approach is
generation of pdfs from which the error to the fit can be
inferred. Figure 3 shows the inferred safety factor, q, pro-
file and distribution obtained by sampling the posterior 200
times. The width of the fits is a characteristic measure of
the error in q.
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Figure 2: Poloidal flux surfaces inferred for MAST shot # 22254
at 320 ms using pickup coils, flux loops and MSE.

3. Inference of force balance
The physics goal of our work is to exploit the im-

proved resolution of diagnostics to infer the validity of dif-
ferent force balance descriptions. Specifically, we have in
mind development of a framework that will validate en-
ergetic plasma resolved force balance models. To build
towards this goal, we commence by applying Bayesian in-
ference to the axisymmetric Grad-Shafranov equilibrium
description of ideal MHD force balance, J × B = ∇P.

The well known Grad-Shafranov equation [21] can be
written

F(R, Z) = 0 (16)

where

F(R, Z)=−µ0R jφ(ψ) + µ0R2 p(ψ) + µ2
0 f (ψ) f (ψ), (17)

−µ0R jφ(ψ)=R
∂

∂R
1
R
∂ψ

∂R
+
∂2ψ

∂z2 . (18)

For a real plasma, the presence of nonideal effects will
mean F(R, Z) is nonzero. Our long term aim is to com-
pute P(F |D) using Bayes formula, such that P(D|F ) =
P(D|F )P(F )/P(D). Here,the vector D comprises all the
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Figure 3: Safety factor, q profile as a function of normalised
poloidal flux found by sampling the posterior 200 times
for shot #22254 at 320ms. The poloidal flux is nor-
malised such that ψn = 0 is the magnetic axis and ψn = 1
is the edge.

magnetics, motional Stark effect, Thomson scattering and
charge exchange recombination data, while the column
vector F contains F(R, Z) evaluated from Eq. (17) at dif-
ferent (R, Z) across the plasma.

An integral representation for the prior P(F ) can be
obtained by using the transformation property

P(F , p(ψ), f (ψ) f (ψ) ×

∂(F , p(ψ), f (ψ) f (ψ))
∂( jφ(ψ), p(ψ), f (ψ) f (ψ))

 =
P( jφ(ψ), p(ψ), f (ψ) f (ψ)) (19)

and integrating both sides across p and f. That is,

P(F ) =


P( jφ(ψ), p(ψ), f (ψ) f (ψ)) ∂(F ,p(ψ), f (ψ) f (ψ))
∂( jφ(ψ),p(ψ), f (ψ) f (ψ))


dpd f f (ψ) (20)

where the integrand dpd f f  = dp(ψ)d f (ψ) f (ψ). An
ideal MHD plasma satisfies Eq. (16), such that the resid-
ual force is zero, and so P(F ) = δ(F ). Unfortunately,
the joint distribution function P( jφ(ψ), p(ψ), f (ψ) f (ψ))
is non-separable, preventing direct integration of Eq.
(20). In future work we will fold interdependency of
jφ, p and f (ψ) f (ψ) together to enable calculation of
P( jφ(ψ), p(ψ), f (ψ) f (ψ).

3.1 Inference of toroidal flux function
Some progress can be made if we assume the plasma

obeys ideal force balance, and p(ψ) is assumed to be in-
dependent of f (ψ) f (ψ) and jφ(ψ). In this instance, and
providing we are able to estimate p(ψ) and its distribu-
tion from measurements, then f (ψ) f (ψ) across the mid-
plane can be computed through Eq. (17). As a first step
to inference of force balance in a real plasma, we compute
f (ψ) f (ψ), integrate to find f (ψ), and substitute this back
into MINERVA. By examining the changes in the position

of the magnetic axis and q profile from the recomputed so-
lution, we are able to quantify the impact of poloidal cur-
rents on current tomography without the need for a sepa-
rate magnetic reconstruction by EFIT. This folds p(ψ) into
jφ(ψ) through the influence of poloidal currents.

For an ideal gas, the pressure is given by

p = nekBTe + nikBT i (21)

with ne, ni the electron and ion density, and Te, Ti the elec-
tron and ion thermal temperature. At 320 ms, high reso-
lution Thomson scattering measurements of Te and ne are
available. The data is distributed normally about each data
point, and a mean and standard deviation provided. To ob-
tain a pressure estimate, we have assumed that the mean
values of density and temperature satisfy ni/ne = 0.8, and
Ti/Te = 1.1, as typically extracted from a charge exchange
recombination measurement. We have also assumed the
same distribution of data as Thomson Scattering.

We have next computed a fit for the pressure p(ψ) us-
ing Monte Carlo simulation [22]. The procedure is as fol-
lows: at each radial grid point, the inverse transformation
method is used to generate ne, Te, ni, Ti samples that sat-
isfying the prescribed pdfs P(ne), P(Te), P(ni), P(Ti). To
compute p(ψ) and its distribution we have mapped each
sample p(r) to p(ψ) using ψ(r) across the inboard chord
determined from MSE. To find a smoothed p(ψ) we have
then fitted a fourth order polynomial in normalized flux.
The sampling process is repeated until the pdf for p(ψ) no
longer changes.

Figure 4 shows the sampled pressure and fit for the
pressure using Ns = 2000 samples. Overlaid is the poly-
nomial fit for each sample across the midplane. The width
of the polynomial fit (shown in black) yields a lower case
estimate to the standard deviation in p(ψ).

Figure 4: Inferred pressure profile p(r) across inboard midplane
radial chord at 320 ms in # 22254. The sampled data are
shown as points, and the black lines are fits to p(ψ) for
each sample set using a fourth order polynomial in ψ.

Using the pressure profile fit of Figure 4, we have
sampled p(ψ) and jφ across the midplane and computed
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f (ψ) f (ψ). Figure 5 shows the mean and standard devia-
tion for p(ψ), jφ and f (ψ) f (ψ). For reference, the sched-
uler EFIT solution for this time slice is over-plotted in bold.
While the MSE current profile is qualitatively similar to
EFIT, the pressure profile is very different, particularly in
the edge and core regions. This difference is principally
responsible for the difference in f (ψ) f (ψ) at the core and
edge seen in panel (c).

Next, we have integrated f (ψ) f (ψ) to obtain f (ψ)
from panel (c). This yields a toroidal flux profile that
varies approximately linearly in poloidal flux from f (ψ) =
−0.407 at the edge to f (ψ) = −0.496 at the core. That is,
poloidal plasma currents are paramagnetic, and increase
Bφ by 22% at the core. Qualitatively, this poloidal current
should lift the on-axis safety factor ≈ 22%, increase the
change in poloidal flux across the plasma, but not change
the geometry of flux surfaces or the Shafranov shift. Work
is in progress to investigate the impact of the correction to
f (ψ) in MINERVA.

Figure 5: Inferred parameters across the midplane inboard radial
chord using Monte Carlo simulation. Panel (a) shows the
pressure gradient p(ψ), panel (b) the toroidal current and
panel (c) the toroidal flux flux function f (ψ) f (ψ).

4. Inference of mode structure
A second objective of the project is to test predic-

tions of MHD mode theory, particularly mode structure.
To achieve this goal we intend to develop a Bayesian in-
ference tool to identify oscillations using the mode struc-
ture of a collection of candidate modes. The low beta he-
liac plasma configuration of H-1NF is ideally suited to this
task, as there is little uncertainty in the equilibrium, and
precision control of the helical coil currents enables access
to a wide range of magnetic rotational transform ( ι-) pro-
files, as shown in Fig. 6. The combination thus offers a
rich testing ground for Bayesian mode analysis.

For inference of mode structure, the relevant plasma
parameters I are the set of eigenmode-specifying parame-
ters (frequency, mode numbers, radial structure moments)
and D is a set of Mirnov array measurements made out-
side the plasma. By solving the eigenmode problem in the
plasma, and computing the vacuum-region magnetic field

corresponding to a given plasma mode we obtain the for-
ward model for D given I. Given some prior P(I), the
likelihood P(D|I) can then be constructed.

In the remainder of this section we derive the for-
ward model for Global Alfvén Eigenmodes (GAEs) in H-1
plasmas. As a starting point to this sub-task, we compute
GAEs in a cylindrical plasma model (coordinates (r, θ, z))
incorporating a vacuum region in the region rp < r < rw

which is encased by a perfectly conducting wall at r = rw.

Figure 6: Rotational transform as a function of average minor
radius for the typical range of κh in H-1NF, a three field-
period heliac with average minor radius rp = 0.2m and
major radius R = 1m.

GAEs are discrete modes that accumulate at the mini-
mum ω2

min of the Alfvén continuum ω2
A = k2

 v
2
A[23] where

k denotes the component of the wave vector parallel to
the equilibrium magnetic field and vA denotes the Alfvén
speed. Expanding k = k · B and substituting into ω2

A =

k2
 v

2
A yields ω2

A ∝ (n − ι-m)2/ρ where m, n are the poloidal
and toroidal mode numbers respectively, and ρ is the mass
density profile, assumed to take the form ρ = ρ0


1 − r2/r2

p



with ρ0 the density on-axis. We defineω2
min to be the global

minimum of ω2
A over the interval (0, rp), if such a mini-

mum exists. That is, ω2
min is the smallest ω2

A(r0) with both
ω2

A
(r0) = 0 and ω2

A
(r0) > 0 for some radius r0 such

that 0 < r0 < rp. Figure 7 shows the dependency of
ωmin on κh for different m, n modes. We have restricted
our attention to the frequency interval 0 < f < 40 kHz,
where f = ω/(2π), since we are only interested in sta-
ble modes, and current H-1 diagnostics cannot resolve fre-
quencies above 40 kHz. Theoretically, for a given κh,
GAEs lie at frequencies just below the lines in Figure 7,
accumulating at ωmin, with an increasing number of radial
nodes the closer the eigenfrequency lies to ωmin.

We have modelled the plasma region by a stellarator
normal-mode formulation in a cylindrical plasma [24, 25],
corrected for non constant density profile. The eigenvalue
equation for this problem can be written

Lϕ = ω2Mϕ, (22)

where ω is given in units of inverse Alfvén time τ−1
A =

B0/R
√
µ0ρ0, with B0 the field strength at the magnetic axis,
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Figure 7: A plot of the minimum in the continuum ωmin/(2π) vs
κh for a selection of mode numbers (m, n). The cross-hairs
mark the location of the eigenmode shown in Fig. 8.

and where ϕ is defined in terms of the radial element of the
fluid displacement

rξr = exp

i(mθ − n

R
z)

ϕ(r), (23)

with i =
√
−1. The operators L and M are give by:

L = −1
r

d
dr

(n − m ι-)2r
d
dr
+

m2

r2


(n − m ι-)2 − DS +

ϊ-
m

(n − m ι-)

, (24)

M = −1
r

d
dr

ρ(r)
ρ0

r
d
dr
+
ρ(r)
ρ0

m2

r2 . (25)

Equation (22) is derived by averaging over helical ripple
and assuming large aspect ratio. The Suydam stability pa-
rameter is given by

DS = −
β0

22 p(r)Ω(r) (26)

where the average field line curvature is

Ω(r) = 2N

r2 ι- + 2


r ι-dr


(27)

Here j =
√
−1, ’prime’ denotes radial derivatives, ι̇- = r ι-,

p(r) is the normalized pressure,  is the inverse aspect ratio,
N is the number of turns made by the helical windings and
β0 = 2µ0 p0/B2

0 is the ratio of plasma pressure to magnetic
pressure at magnetic axis.

Turning now to the vacuum region, the magnetic field
B must satisfy ∇×B = 0 and ∇·B = 0. In cylindrical geom-
etry we can write B in terms of modified Bessel functions,
up to a scale factor.[26] The boundary conditions

[[Br]] = [[B]] = 0 (28)

where [[B]] = Bvacuum − Bplasma, together with

ξr(0) = 0, |m|  1, (29)

ξr(0) = 0, |m| = 1, (30)

Br(rw) = 0, (31)

relate the vacuum solution to that in the plasma.

If ω2
min appears in the plasma and is positive, a shoot-

ing method is used to find solutions to Eqs. (22), (28),
(31), and Eq. (29) or Eq. (30) with frequency 0 < ω <

ωmin. More explicitly, we select the appropriate bound-
ary condition for ξr at r = 0, and then ’shoot’ out to the
plasma/vacuum interface, searching frequency space in the
region 0 < ω < ωmin for eigenfrequencies that are con-
sistent with Eq. (28). Figure 8 shows an example of an
(m, n) = (3, 4) eigenmode found in this manner, located
at the point (κh, ω) indicated by the cross-hairs in Figure
7. The global structure seen has promising features when
compared to recent spectral measurements of the mode:
the mode structure is global in radial extent, and the radial
position of the peaks nodes broadly matches observations.

Figure 8: The radial fluid element displacement ξr as a func-
tion of minor radius for (m, n) = (3, 4) and κh = 0.73
at the eigenfrequency indicated This eigenmode has an-
gular frequency ω = 12.1 k rad s−1

5. Conclusions
In this work we have described a Bayesian inversion

framework for inference of force-balance and mode struc-
ture. Progress has been reported in three areas: develop-
ment of Bayesian inversion for current profiles; inference
of the toroidal flux profile assuming the plasma satisfied
ideal MHD; and calculation of a Global Alfvén eigen-
mnodes in a helical-ripple averaged cylindrical plasma
model.

Based on working by Svensson et al. we have devel-
oped Bayesian inversion for current profiles and poloidal
flux contours in MAST. The model comprises a grid of
rectangular toroidally extended current beams, and is con-
strained by pickup coils, flux looops and MSE data. Owing
to the placement of the MSE viewing optics the tangent
of the polarisation angle of emitted light is linear in BR

and BZ . Signals from the pickup coils and flux loops are
also linear in BR and BZ . This feature means the prediction
vector for the data is linear in the currents. We have used
a conditional autoregresssive prior to describe the initial
current distribution, which has the advantage of enforcing
some smoothness between adjacent current beams while
minimizing spatially long ranged effects. Posterior calcu-
lations of the poloidal flux contours of MAST #22254 at
320 ms illustrate good boundary agreement to EFIT.
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In Sec. 3 we outlined an inference technique for
the extraction of force balance, as applied to the Grad
Shafranov equation. Using Thomson scattering data and a
Monte Carlo simulation technique, we fitted pressure pro-
files to the inboard midplane chord of MAST, and com-
puted p(ψ). Assuming ideal MHD force balance we then
calculated f (ψ) f (ψ). While the f (ψ) f (ψ) profile is simi-
lar to EFIT, the change in f (ψ) from the core to the edge is
22%, which is slightly larger than the EFIT value. Quali-
tatively, this poloidal current should lift the on-axis safety
factor by ≈ 22%, and increase the change in poloidal flux
across the plasma, but not change the geometry of flux
surfaces or the Shafranov shift. At present, we are sub-
stituting the corrected Bφ profile inferred from f (ψ) into
MINERVA to compute the effect of poloidal currents on
the calculation of jφ and ψ surfaces. This constitutes a first
step towards combining jφ, p(ψ) and f (ψ) f (ψ) to validate
different equilibrium descriptions.

Finally, we have developed an analysis approach for
the inference of mode structures, and constructed a GAE
model. The model, which is in cylindrical geometry, ac-
counts for a non constant density profile, features helical
ripple averaging to compute the Suydam criterion and gen-
erate ι-, and includes the vacuum region. The model has
been applied to the range of ι- profiles accessible to H-1
plasmas, and the minimum in the continuum computed as
a function of helical winding current ratio κh. The eigen-
function of a candidate (m, n) = (3, 4) GAE mode was de-
termined at an angular frequency of 12.1 krad s−1. The
eigenfunction has similar structure to recent observations
in H1, including the same number of radial nodes which
occur at similar radial positions.

In ongoing work we are developing forward models
of Thomson scattering and charge exchange recombination
spectroscopy for inference of force balance in MAST plas-
mas. We will be exploiting this information not only to im-
prove equilibrium reconstruction, but to use Bayesian in-
ference as a tool with which to resolve competing equilib-
rium models. In particular, we intend to compare force bal-
ance descriptions of ideal MHD, ideal MHD with flow [1],
two fluid models [27], and energetic fluid resolved equilib-
ria [2]. The Bayesian model offers a rigorous framework
with which to quantify the fit and thereby elucidate the im-
portant underlying physics. With regards mode structure,
we intend to transform the cylindrical eigenfunction to a
beam cross-section equilibria [28] and identify a candidate
mode set which spans the different type of mode structures
observed. The next stage of this work involves deployment
of forward models for mode structures into MINERVA to
compute the posterior for the mode class and parameters.
On a longer time scale we envisage the cylindrical plasma
model will be replaced by a fully 3D ideal MHD wave
mode code, CAS3D [29]. As with equilibrium modelling,
the importance of mode analysis by Bayesian inversion is
that it offers a rigorous framework in which to identify
wave mode structures, some of which have deleterious ef-

fects on plasma performance.
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