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Action-angle representation of linear fluctuation in plasma is formally performed by taking the
Lagrange-Hamilton theory as the basis and invoking the recent spectral technique [Hirota and Fukumoto,
J. Math. Phys. 49 083101 (2008)], which is shown to be applicable equally to the magnetohydrodynamic
(MHD) system and the Vlasov-Maxwell system. This formalism leads to a natural definition of the
wave energy (as well as the wave action) for each eigenmode and continuum mode. Negative energy
mode is generally responsible for onsets of various instabilities in flowing plasmas. It is shown that the
canonical form of the linearized system, formulated by Hamilton’s principle of least action, facilitates the
consideration of the action-angle representation, and the spectral technique becomes more sophisticated
than the previous work that based on the noncanonical form.
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1. Background
Stabilization or destabilization of plasma by flow

is a key issue in recent fusion research and astro-
physics. While its mechanism is drawing a lot of at-
tention, theories for flowing plasmas are quite limited
in comparison to static plasmas; especially, clear-cut
stability criteria are hard to obtain. For example, the
variational approaches[1, 2, 3, 4], which are nowadays
well-known such as the energy principle in the MHD
theory [5], the Arnold method [6, 7] and the energy-
Casimir method [8], are often fruitless for flowing plas-
mas, i.e., they end up with extremely limited stability
conditions especially for 3D disturbances. In order to
gain a better understanding of various instabilities in
flowing plasmas, it is informative to study the energy
of eigenmode in the context of the stability theory
of Hamiltonian system [9, 10, 11, 12], in which neg-
ative energy mode is generally regarded as a source
of instability. It is well known that negative energy
mode may occur in moving medium (i.e., flow) [13],
which is not always unstable but tend to be destabi-
lized in combination with positive energy modes (re-
active instability [9, 14, 15]) or by small dissipation
effect (dissipation-induced instability [16]).

However, such Hamiltonian theories are not yet
matured for the “continuum mode” that is well-known
to occur in fluctuation of plasma. The existence of
continuum mode (or continuous spectrum) requires
careful mathematical treatments of singularities in the
eigenvalue problem. The wave energy for continuous
spectrum was first successfully derived by Morrison
and Pfirsch [17] in the linear Vlasov-Poisson system,
where the corresponding action-angle representation
is rigorously performed by means of a singular inte-
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gral transform akin to the Hilbert transform [18]. Re-
cently, we have developed another new spectral tech-
nique [19], which enables us to evaluate wave energy
(and also action-angle variables) for each eigenmode
and continuum mode in a unified manner by invoking
the Laplace transform. Our method has been applied
to the vortical continuum mode in shear flow [19] and
the Alfvén and sound continua [20] in the MHD case.
The action-angle representation of linear fluctuation
serves to provide a Hamiltonian interpretation of var-
ious resonant instabilities in flowing plasmas. For in-
stance, it is shown [19] that resonant coupling between
an eigenmode and a continuum mode having the same
sign of energy results in phase mixing (or continuum)
damping. In contrast, such resonance triggers an in-
stability if their signs of energy are opposite. The
stabilization of the resistive wall mode by flow can be
discussed in this general framework [21].

In this paper, we will rework our spectral
method [19] in a more sophisticated way by the use of
the Lagrangian approach to plasmas [22, 23, 24, 25].
We first introduce Hamilton’s principle of least action
into linear perturbation, which enables us to write the
linearized system in the canonical form. This proce-
dure will be demonstrated for the ideal MHD equation
and the Vlasov-Maxwell equation as well, from which
one can expect the generalizations to other equations.
The canonical form is more intuitive and tractable
than the noncanonical form which we have employed
in the previous work [19]. By constructing an appro-
priate Poincaré invariant, we will effectively perform
the action-angle representation even in the presence of
growing/damping eigenmodes and continuum modes,
which are not periodic in time by nature. The de-
tailed calculation of wave energy for eigenmodes and
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continuum modes has been done for the MHD case
by assuming a slab geometry [20]. The present work
indicates that the same treatment is also valid for the
Vlasov-Maxwell system.

2. Hamilton’s principle of least action
for linearized systems
In this section, we discuss the canonical aspect

of linear perturbation according to the Lagrange-
Hamilton theory. In order to arrive at the canonical
form of a linearized dynamical system, it is essential
to note that the linearized system naturally inherits
the variational principle of least action. First, let us
simply review this fact by considering an action inte-
gral

S =
∫ t2

t1

L(q, q̇, t)dt, (1)

with a Lagrangian L for generalized coordinates
q(t) = (q1, q2, . . . , qn)(t) and velocities q̇ = dq/dt.
Hamilton’s principle of least action δS = 0 yields the
Euler-Lagrange equation for q(t),

d

dt

(
∂L

∂q̇

)
=

∂L

∂q
(2)

Now, suppose that q(t) is any given solution (includ-
ing steady one dq/dt = 0). We try searching a per-
turbed solution q�(t) = q(t) + q̃(t) in accordance with
Hamilton’s principle. By substituting the trial func-
tion q�(t) into S, we obtain the following expansion
with respect to the perturbation q̃(t),

S =S(0) + S(1) + S(2) + S(3) + . . . (3)

Since the basic solution q(t) is already extremum δS =
0, we find that S(1) = 0 holds automatically. If the
amplitude of q̃(t) is sufficiently small compared with
q(t), one may neglect the higher order terms S(n), n ≥
3, and obtain an action integral for the perturbation
q̃(t) as

S(2) =
∫ t2

t1

L(2)dt (4)

=
∫ t2

t1

1
2

(
˙̃q · ∂2L

∂q̇2
˙̃q + 2q̃ · ∂2L

∂q∂q̇
˙̃q

+ q̃ · ∂2L

∂q2
q̃

)
dt, (5)

where L(2) is thought to be a Lagrangian for the per-
turbation q̃(t) that is to be varied. Since S(2) is
quadratic, the extremum condition δS(2) = 0 with re-
spect to δq̃ yields the linearized Euler-Lagrange equa-
tion,

d

dt

(
∂2L

∂q̇2
˙̃q +

∂2L

∂q̇∂q
q̃

)
=

∂2L

∂q∂q̇
˙̃q +

∂2L

∂q2
q̃. (6)

Hamilton’s principle is therefore valid even for linear
dynamics. The linearized equation derived in this way
is especially called the Jacobi equation [6, 7].

As usual, the Legendre transform p̃ = ∂L(2)/∂ ˙̃q
determines a quadratic Hamiltonian function H(2) in
the phase space (q̃, p̃) as far as (∂2L/∂q̇2)−1 exists.
For later use, we introduce the following unified nota-
tions;

ũ =
(

q̃

p̃

)
, J =

(
0 1
−1 0

)
, (7)

and

H(2)(ũ)

=
1
2

(
p̃ − ∂2L

∂q̇∂q
q̃

)
·
(

∂2L

∂q̇2

)−1 (
p̃ − ∂2L

∂q̇∂q
q̃

)

− 1
2
q̃ · ∂2L

∂q2
(q̃) (8)

=:
1
2
�ũ,Hũ� , (9)

where we have naturally identified the phase space ũ

as a Hilbert space with an inner product �ũ1, ũ2� =
q̃1 · q̃2 + p̃1 · p̃2, and the linear operators J and H are
respectively anti-symmetric and symmetric by defini-
tion. Then, the Hamiltonian equation is shortly writ-
ten as

∂tũ = J ∂H(2)

∂ũ
or ∂tũ = JHũ. (10)

It must be remarked that H(2) qualifies as the pertur-
bation (or wave) energy only when the basic solution
q(t) is an equilibrium state (dq/dt = 0). This is be-
cause the linear term H(1) of the series expansion of
the Hamiltonian H is not zero in general. It becomes
automatically zero only at an equilibrium state where
∂H/∂q = ∂H/∂p = 0 is satisfied.

Let us derive the action-angle variables for an os-
cillatory eigenmode in the conventional manner. Sup-
pose that the basic solution is an equilibrium state
and there is a single eigenmode,

ũ(t) =ûe−iωt + c.c., (11)

with an eigenfrequency ω ∈ R and an eigenvector
û = (q̂, p̂). The complex conjugate (c.c.) is needed
to insure that ũ(t) is real. By introducing the angle
variable as θ(t) = ωt, the action variable is represented
by

µ :=
�

p̃ · dq̃ =
1

2π

∫ 2π

0

p̃ · ∂q̃

∂θ
dθ

= ip̂ · q̂ − ip̂ · q̂ =
�
û, iJ û

�
. (12)

It is easily verified that the energy of eigenmode is
H(2) = ωµ.
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The derivation of the canonical equation (10) that
we have shown here can be applied to plasmas in a
similar way. While the configuration space for the
generalized coordinates is no longer finite-dimensional
q(t) ∈ Rn, the Lagrange-Hamilton theory for plasma
has been developed by several pioneering works. Here,
we briefly summarize their results and show the canon-
ical form explicitly.

2.1 Magnetohydrodynamics
The Lagrangian for the ideal MHD equations

was clarified by Newcomb [23], where the general-
ized coordinates correspond to the fluid particle or-
bits x(0) �→ x(t) that is mathematically understood
as a diffeomorphism group (the Lagrangian descrip-
tion of fluid motion). The velocity field v(x, t) in
the Eulerian coordinates is associated with the orbits
via ẋ(t) = v(x(t), t). The magnetic field B(x, t), the
mass density ρ(x, t) and the specific entropy s(x, t) are
frozen to each infinitesimal fluid element convected by
the flow x(0) �→ x(t).

Assume that (v,B, ρ, s) is a given basic solution of
the MHD equation. The above kinematical (or topo-
logical) constraints imply that the MHD fluctuations
are expressed by

ṽ =∂tξ̃ + (v · ∇)ξ̃ − (ξ̃ · ∇)v, (13)

B̃ =∇× (ξ̃ × B), (14)

ρ̃ = −∇ · (ρξ̃), (15)

s̃ = − ξ̃ · ∇s, (16)

where the vector field ξ̃(x, t) represents the displace-
ment of the particle orbit, x�(t) = x(t) + ξ̃(x(t), t),
observed in the Eulerian coordinates [26, 23].

The small-amplitude expansion of the MHD La-
grangian was performed by Dewar [24], which results
in

L(2) =
∫

1
2


ρ

�����
Dξ̃

Dt

�����
2

+ ξ̃ · F ξ̃


 d3x (17)

where D/Dt = ∂t + v · ∇. The symmetric operator F
is defined by

F ξ̃ =(B · ∇)[(B · ∇)ξ̃] − (ξ̃ · ∇)∇p∗

+ ∇[(B2 + ρc2s)∇ · ξ̃] − (∇ · ξ̃)∇p∗

+ ∇(ξ̃ · ∇p∗) − (B · ∇)[(∇ · ξ̃)B]

−∇{B · [(B · ∇)ξ̃]}, (18)

where p∗ = p(ρ, s) + B2/2 is the sum of kinetic and
magnetic pressures and cs =

√
∂p/∂ρ is the sound

speed. Hamilton’s principle leads to the equation of
motion,

ρ
D2ξ̃

Dt2
= F ξ̃, (19)

where D2/Dt2 = (∂t +v ·∇)(∂t +v ·∇) and note that
∂t and v · ∇ do not commute for a time-dependent
flow v. If the basic fields are an equilibrium state,
this equation reduces to the one derived by Frieman
and Rotenberg [26]. Together with the momentum
field defined by m̃ = ρDξ̃/Dt, (19) is written in the
canonical form (10) where

ũ =
(

ξ̃

m̃

)
, H =

(
−F ∇ · v + v · ∇

−v · ∇ 1/ρ

)
,

(20)

and the inner product is

�ũ1, ũ2� =
∫

(ξ̃1 · ξ̃2 + m̃1 · m̃2)d3x. (21)

As was shown in (12), the action variable for an
eigenmode ξ̃(t) = ξ̂e−iωt + c.c. is calculated as

µ =i

∫ (
ξ̂ · m̂ − m̂ · ξ̂

)
d3x

=2
∫

ξ̂ · ρ(ω + iv · ∇)ξ̂d3x. (22)

This agrees with the spatial integration of the wave
action density derived by Brizard [27].

2.2 Vlasov-Maxwell system
The Lagrangian theory for the Vlasov-Maxwell

equation was formulated by Low [22]. Here, we con-
sider a plasma consisting of one species with particle
mass m and charge q (but the generalization to the
multi-species case is straightforward). Let (f,E,B)
be a given solution, where f(x,v, t) is the distribution
function, and E(x, t) and B(x, t) are respectively the
electric and magnetic fields. According to Low (see
also Galloway & Kim [25]), the linear perturbation is
expressed by

f̃ = −∇ · (f ξ̃) −∇v ·

(
f
Dξ̃

Dt

)
(23)

Ẽ = −∇φ̃− ∂tÃ, (24)

B̃ =∇× Ã (25)

in terms of the fluctuations of the scalar φ̃(x, t) and
vector Ã(x, t) potentials and the displacement vector
ξ̃(x,v, t) observed in the phase space;

x�(t) = x(t) + ξ̃(x(t),v(t), t), (26)

v�(t) = v(t) +
Dξ̃

Dt
(x(t),v(t), t). (27)

Here, one must regard the total derivative D/Dt as

D

Dt
=

∂

∂t
+ v · ∇ +

q

m
(E + v × B) · ∇v. (28)

The relation (23) originates from the fact that the
distribution function f is frozen to the phase space

465

M. Hirota, Action-Angle Representation of Waves and Instabilities in Flowing Plasmas



flow (x, v)(0) �→ (x, v)(t). The condition ∇ · B̃ = 0
and Faraday’s law ∇×Ẽ+∂tB̃ = 0 have been already
taken into account in (24) and (25). By employing
the Coulomb gauge ∇ · Ã = 0, we can eliminate the
electrostatic potential φ̃ from the dynamical variables
since Gauss’s law relates φ̃ to ξ̃ through the Poisson
equation;

�0∆φ̃ = −
∫

qf̃d3v =
∫

q∇ · (f ξ̃)d3v, (29)

where �0 denotes the vacuum permittivity. In this way,
we regard the Coulomb gauge and the Poisson equa-
tion as kinematical constraints (which are imposed
on the configuration space to be varied in Hamilton’s
principle).

The Lagrangian for the fluctuations ξ̃ and Ã is
then given by

L(2) =
1
2

∫
d3x

∫
d3vf

[
m

�����
Dξ̃

Dt

�����
2

+ 2q[(ξ̃ · ∇)A + Ã] · Dξ̃

Dt

− qξ̃iξ̃j
∂2(φ − v · A)

∂xi∂xj
− 2qξ̃ · ∇(φ̃ − v · Ã)

]

+
1
2

∫
d3x

[
�0|∇φ̃ + ∂tÃ|2 − 1

µ0
|∇ × Ã|2

]

(30)

where µ0 is the vacuum permeability. In comparison
with the previous works [22, 25], note that φ̃ in L(2)

must be substituted by the solution φ̃ of (29) and we
have a relation,

∫
|∇φ̃ + ∂tÃ|2d3x =

∫
(|∇φ̃|2 + |∂tÃ|2)d3x,

(31)

since the functional spaces of gradient fields and
divergence-free fields are orthogonal to each other.
The variation of S(2) =

∫ t2
t1

L(2)dt with respect to δξ̃

and δÃ gives, respectively, the equation of motion and
the divergence-free part of Ampère’s law,

m
D2ξ̃

Dt2
= qξ̃ · ∇(E + v × B) + q

Dξ̃

Dt
× B

+q(Ẽ + v × B̃), (32)

�0∂
2
t Ã +

1
µ0

∇× B̃ = P
[
q

∫
f̃vd3v

]
, (33)

where P denotes the projection onto the space of
divergence-free vector fields. The gradient part of
Ampère’s law is automatically satisfied by the Pois-
son equation (29).

The corresponding momentum fields are found to

be

m̃ =
δL(2)

δ
˙̃
ξ

= f

[
m

Dξ̃

Dt
+ q(ξ̃ · ∇)A + qÃ

]
,

(34)

Ỹ =
δL(2)

δ ˙̃A
= �0∂tÃ, (35)

where the phase space ũ = (ξ̃, Ã, m̃, Ỹ ) is constrained
by ∇ · Ã = ∇ · Ỹ = 0. The Legendre transform
determines a proper Hamiltonian H(2) and canonical
equations,

∂tξ̃ =
δH(2)

δm̃
, ∂tm̃ = −δH(2)

δξ̃
,

∂tÃ =
δH(2)

δỸ
, ∂tỸ = −δH(2)

δÃ
, (36)

which are shown explicitly in the Appendix.
For an eigenmode (ξ̃, Ã)(t) = (ξ̂, Â)e−iωt + c.c.,

the action variable is calculated by

µ =i

∫ ∫ (
ξ̂ · m̂ − m̂ · ξ̂

)
d3vd3x

+ i

∫ (
Â · Ŷ − Ŷ · Â

)
d3x, (37)

where m̂ and Ŷ can be eliminated by using the rela-
tions, (34) and (35) (e.g., Ŷ = −iω�0Â).

For the purpose of finding the action-angle vari-
ables, this canonical formalism is quite beneficial and
intuitive. However, in contrast to the MHD case, the
equations (32) is not necessarily required to be solved
in many cases, since we are usually interested in the
behavior of the scalar function f̃ , not in the two vec-
tor fields ξ̃ and m̃. It is more economical to consider
the Lie-generated perturbation [27, 28, 29],

f̃ =[g̃, f ] +
q

m
Ã · ∇vf, (38)

by solving the equation for the generating function
g̃(x, v, t),

Dg̃

Dt
=q(φ̃ − v · Ã), (39)

where the Lie bracket is defined by

[f, g] :=
1
m

(∇f · ∇vg −∇vf · ∇g)

+
q

m2
(∇vf ×∇vg) · B, (40)

for any functions f, g of (x, v, t). One can confirm
that f̃ generated by (38) solves the linearized Vlasov-
Maxwell equation, and moreover ξ̃ and Dξ̃/Dt gener-
ated by

ξ̃ = [x, g̃] =
1
m
∇v g̃ (41)

m
Dξ̃

Dt
+ qÃ = [mv, g̃] = −∇g̃ − q

m
B ×∇v g̃

(42)
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solve (32).
In terms of an eigenmode (g̃, Ã)(t) =

(ĝ, Â)e−iωt + c.c., the action variable (37) is
rewritten as

µ = i

∫ ∫
f [ĝ, ĝ]d3vd3x + 2ω

∫
|Â|2d3x. (43)

3. Spectral approach to action-angle
representation
We have seen that the linearized systems for the

ideal MHD equation and the Vlasov-Maxwell equation
are commonly written in the canonical form (10) with
a judicious choice of variable ũ and its Hilbert space.
Accordingly, wave action of a single eigenmode has
been derived by simply applying the calculus of action
variable (12) to the infinite-dimensional phase space ũ.
However, the fluctuation ũ(t) of plasma generally con-
tains not only eigenmodes but also continuum mode.
It is formally written as

ũ(t) =

[∑
n

ûne−iωnt +
∫

σc

û(ω)e−iωtdω

]

+ c.c., (44)

in the presence of semi-simple eigenvalues (or discrete
spectra) {ωn ∈ C|n = 1, 2, 3, . . . } and a continuous
spectrum σc ⊂ R lying on the real axis. The naive
formula (12) does not apply to continuum mode that
consists of infinite number of singular (or improper)
eigenmodes û(ω)e−iωt. If a singular eigenmode was di-
rectly substituted into (12), the action variable would
diverge since it is non-squire-integrable �û(ω)�2 = ∞.

In order to handle multiple eigenmodes and con-
tinuum modes in a unified manner, we use the follow-
ing spectral approach. By just multiplying the imagi-
nary unit i, the linear Hamiltonian equation (10) can
look like a Schrödinger equation,

i∂tũ =Lũ, (45)

where L = iJH is a non-self-adjoint operator with re-
spect to the inner product �◦, ◦� of the complex Hilbert
space (the overbar denotes complex conjugate). We
denote by σ ⊂ C the spectrum of L, which is the en-
tirety of all eigenvalues and continuous spectra.

Note that the adjoint operator is given by L∗ =
iHJ and its spectrum is the complex conjugate σ of
σ. The evolution equation (45) is said to possess a
pseudo-Hermitian structure [30, 31], since L is Her-
mitian (i.e., self-adjoint) with respect to an indefinite
inner product �◦,J ◦�.

The solution of (45) is represented by the
Dunford-Taylor integral [32],

ũ(t) =
1

2πi

�

Γ(σ)

(Ω − L)−1ũ0e
−iΩtdΩ, (46)

where ũ0 = ũ(0) denotes the initial data and Γ(σ)
represents a path of integration that encloses the spec-
trum σ ⊂ C counterclockwise. The operator (Ω−L)−1

is called the resolvent operator. By introducing a no-
tation U(Ω) = (Ω −L)−1ũ0, the Laplace transform of
ũ(t) corresponds to iU(Ω), which analytically depends
on Ω as long as Ω avoids the spectrum σ. The contour
integral in (46) plays the role of the inverse Laplace
transform.

We can prove that the spectrum σ is symmetric
with respect to both real and imaginary axes; σ = σ =
−σ = −σ, which is a common property of Hamiltonian
systems [19]. [Proof: Since ũ(t) must be real, σ = −σ

holds. The similarity J−1LJ = L∗ implies that σ =
σ.]

As a preparatory for the action-angle representa-
tion of ũ(t), we introduce a related Poincaré invariant
(or the phase space volume enclosed by a family of
solutions) [33]. First, let us decompose the spectrum
into σ = σ+ ∪ σ− such that σ+ (or σ−) is inside the
right (or left) half plane. According to the symmetry
σ− = −σ+, (46) is rewritten as

ũ(t) =
1

2πi

�

Γ(σ+)

(Ω − L)−1ũ0e
−iΩtdΩ + c.c.

(47)

We generate a family of solutions by replacing the ini-
tial data ũ0 by ũ0e

−iθ0 ,

ũ(t, θ0) =
1

2πi

�

Γ(σ+)

(Ω − L)−1ũ0e
−iΩt−iθ0dΩ

+ c.c., (48)

which causes a uniform phase shift (+θ0) of all eigen-
modes and continuum modes. Since this family of
solutions is labeled by 0 < θ0 ≤ 2π and closed,
ũ(t, θ0) = ũ(t, θ0 + 2π), we can define a Poincaré in-
variant as the ensemble average over θ0;

S̃ :=
1

4π

∫ 2π

0

�
∂ũ

∂θ0
,J ũ

�
dθ0. (49)

It is easy to verify the invariance ∂S̃/∂t = 0 by using
(10), which is nothing but Liouville’s theorem for the
perturbation.

By substituting (47) into (49), the integration
with respect to θ0 results in

S̃ =Re
�

1
2πi

�

Γ�(σ+)

(Ω� − L)−1ũ0e−iΩ�tdΩ�,

iJ 1
2πi

�

Γ(σ+)

(Ω − L)−1ũ0e
−iΩtdΩ

�
. (50)

By noting the identity J (Ω − L)−1 = (Ω − L∗)−1J ,
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the Poincaré invariant is further reduced to

S̃ =Re
1

(2πi)2

�

Γ�(σ+)

dΩ�
�

Γ(σ+)

dΩ

�
ũ0, iJ (Ω� − L)−1(Ω − L)−1ũ0

�
ei(Ω�−Ω)t,

=
1

2πi

�

Γ(σ+)

D(Ω)dΩ, (51)

where a function D : C → C is defined by

D(Ω) :=
�
ũ0, iJ (Ω − L)−1ũ0

�
, (52)

and we have used a property of the resolvent opera-
tor [32]. It should be remarked that the Poincaré in-
variant S̃ is defined for general perturbations ũ(t) that
are not necessarily periodic in time. Namely, σ+ may
include complex eigenvalues (Im ωn �= 0) represent-
ing growing/damping eigenmodes as well as continu-
ous spectrum which causes the phase mixing. Note
that S̃ defined above recovers the action variables for
neutrally stable modes (ωn ∈ R), since

∫ 2π

0
dθ in (12)

and
∫ 2π

0
dθ0 in (49) become equivalent. Therefore, we

refer to S̃ as the wave action of ũ(t) in a wider sense.
In the last expression (51), the integration over

the phase angle 0 < θ0 ≤ 2π is eventually converted
into a contour integral in C enclosing the spectrum
σ+. Note that if the integral path enclosed the whole
spectrum σ, it would always result in

1
2πi

�

Γ(σ)

D(Ω)dΩ = 0, (53)

and mislead us into obtaining ‘zero wave action’. We
suggest that the correct wave action can be obtained
by counting only the contribution from σ+, i.e. the
right half of the spectrum. (While we have ignored
the spectrum on the imaginary axis so far, it would
also turn out to be zero wave action.)

Now, we are ready to perform the spectral decom-
position of the wave action S̃. Since the complex func-
tion D(Ω) is analytic except for the spectrum σ, one
may analytically deform the integral path Γ(σ+) such
that it consists of many closed paths that individually
enclose each isolated singularity of D(Ω).

If there are semi-simple eigenvalues {ωn ∈ C|n =
1, 2, 3, . . . }, the U(Ω) must have simple poles in the Ω
plane,

U(Ω) =
ûn

Ω − ωn
+ . . . . (54)

where ûn is the projection of ũ0 onto the eigenspace for
ωn. An integral path Γ(ωn) surrounding ωn gives the
wave action (or the action variable) for the eigenmode,

µn =
1

2πi

�

Γ(ωn)

D(Ω)dΩ =
�
ũ0, iJ ûn

�
. (55)

Strictly speaking, this is not the conventional action
variable when ωn is complex, for which the eigenmode

is either exponentially growing or damping. Never-
theless, µn is naturally derived from the Poincaré in-
variant, and ωnµn indeed corresponds to the wave en-
ergy [19]. A little care needs to be paid to the fact
that µn is complex when ωn is complex. Due to the
symmetry σ+ = σ+, an eigenvalue ωn also belongs to
σ+, and let ûn be the corresponding projection and
µn be the ‘action variable’. Using the orthogonality
of the projection [32], we obtain

µn =
�
ûn, iJuûn

�
=

�
ûn, iJuûn

�
= µn, (56)

and hence the sum µn + µn of action variables for
growing and damping modes is always real. When ωn

is a real eigenvalue, there is no distinction between ωn

and ωn, and µn =
�
ûn, iJ ûn

�
∈ R agrees with the

previous result (12).
As for the continuous spectrum σc ⊂ R on the

real axis, the path of integration is deformed into the
two paths that run parallel to σc at the slightly upper
and lower sides;

1
2πi

�

Γ(σc)

U(Ω)e−iΩtdΩ =

lim
ε→0

i

2π

∫

σc

[U(ω + iε) − U(ω − iε)] e−iωtdω.

(57)

Hence, it is reasonable to define a singular eigenfunc-
tion for ω ∈ σc by

û(ω) :=
i

2π
[U(ω + i0) − U(ω − i0)] . (58)

This definition of û(ω) agrees with the Fourier trans-
form of ũ(t) according to Sato’s hyperfunction the-
ory [34] (see also the Appendix of Ref. [35]). Various
examples of singular eigenfunctions û(ω) are found
in literatures; see Van Kampen [36], Case [37, 38],
Sedláček [39] and Tataronis [40].

The wave action for the continuous spectrum is
then given as a function of ω;

µ(ω) =
i

2π
[D(ω + i0) − D(ω − i0)] (59)

=
�
ũ0, iJ û(ω)

�
.

Since the initial data ũ0 is usually non-singular, this
µ(ω) is well-defined.

If the spectrum σ+ is composed of such semi-
simple discrete spectrum {ωn ∈ C : n = 1, 2, . . . }
and a real continuous spectrum σc ⊂ R, the solution
is represented by (44) where the complex conjugate
(c.c.) stems from the other spectrum σ−. The wave
action is decomposed into the action variables,

S̃ =
∑

n

µn +
∫

σc

µ(ω)dω. (60)
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Similarly, the wave energy H(2) = (1/2)�∂tũ,J ũ� be-
comes

H(2) =
1

2πi

�

Γ(σ+)

ΩD(Ω)dΩ, (61)

which is decomposed into

H(2) =
∑

n

ωnµn +
∫

σc

ωµ(ω)dω. (62)

We remark that the derivation of the formulae,
(55) and (59), becomes simpler than the previous
work [19] owing to the canonical formalism. The wave
actions of the vortical continuum [19] and the Alfvén
and sound continua [20] have been derived from µ(ω)
in (59). Our methodology shown here is also applica-
ble to the Vlasov-Maxwell system, and the calculation
of the both wave energy and wave action will be much
facilitated by standing on the present study.

4. Summary
By tracing back to the Lagrange-Hamilton the-

ory [23, 22], we have presented the canonical form of
the linearized systems for the cases of the MHD equa-
tion and the Vlasov-Maxwell equation. In the lat-
ter case, it is essential to impose the Coulomb gauge
as a kinematical constraint on the fluctuation. The
action-angle variable for a neutrally stable eigenmode
is then easily obtained by introducing the conven-
tional formula

�
p · dq to the corresponding phase

space of the fluctuation. As for aperiodic fluctuation
stemming from continuum modes and exponentially
growing/damping eigenmodes, the notion of action-
angle variables needs to be extended. We have nat-
urally performed the action-angle representation for
such general fluctuation by invoking the spectral tech-
nique [19] and introducing the Poincaré invariant as
the ensemble average over the phase angle. The re-
sultant expression (60) [or (62)] provides legitimate
wave action (or wave energy) for any eigenmodes and
continuum modes.

Historically, the wave action density is well-
studied in the eikonal approximation [41], where the
wave is locally assumed to satisfy the dispersion rela-
tion of uniform plasma. In contrast, our method cor-
responds to the spectral decomposition of the wave ac-
tion and can deal with general fluctuation in strongly
inhomogeneous media, in which the eikonal approxi-
mation is not always valid. Based on the present linear
analysis, we expect better understandings of quasi-
linear and weakly nonlinear behavior of plasmas.
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A. Canonical form of the linearized
Vlasov-Maxwell equation

The Hamiltonian function of the linearized system
(or the wave energy) is

H(2) =∫
d3x

∫
d3v

{
1

2mf

���m̃ − qf
[
(ξ̃ · ∇)A + Ã

]���
2

− m̃ · Dξ̃ +
qf

2
ξ̃ ·

[
(ξ̃ · ∇)∇(φ − v · A)

]

− qf ξ̃ · ∇(v · Ã)
}

+
1
2

∫
d3x

[
�0|∇φ̃|2 +

1
�0
|Ỹ |2 +

1
µ0

|∇ × Ã|2
]

,

(63)

where φ̃ is again regarded as the solution of (29) and

D :=v · ∇ +
q

m
(E + v × B) · ∇v. (64)

The canonical equations (36) are then written as

∂tξ̃ = −Dξ̃ + η̃, (65)

∂tm̃ = −Dm̃ + qf
[
η̃ × B + (η̃ · ∇)A

− (ξ̃ · ∇)∇(φ − v · A) −∇(φ̃ − v · Ã)
]
,

(66)

∂tÃ =
1
�0

Ỹ , (67)

∂tỸ =P
{ ∫

q
[
f η̃ − v∇ · (f ξ̃)

]
d3v

}

− 1
µ0

∇× (∇× Ã), (68)

where η̃ should be replaced by the following expres-
sion,

η̃ :=
m̃

mf
− q

m

[
(ξ̃ · ∇)A + Ã

]
. (69)
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