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The effects of trapped and energetic electrons on parallel electric field, E� = (E · B)/B, in a
magnetosonic shock wave propagating obliquely to an external magnetic field are studied by theory and
particle simulations. The analytical expression for F , where F is the integral of E� along B is obtained,
including the number of trapped electros nt as a factor. It is shown that as nt increases, the magnitude
of F increases. Theoretical analysis also suggests that the increase in F causes the electrons to be
trapped deeper and accelerated to higher kinetic energies. These theoretical predictions are confirmed
by relativistic electromagnetic particle simulations.
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1. Introduction
It has been found with theory and particle simula-

tions [1] that prompt electron acceleration to ultrarel-
ativistic energies with γ > 100, where γ is the Lorentz
factor, can occur in a magnetosonic shock wave prop-
agating obliquely to an external magnetic field with
|Ωe|/ωpe

>∼1, where Ωe(< 0) and ωpe are the electron
gyro and plasma frequencies, respectively. The ac-
celeration is extremely strong when the propagation
speed of the shock wave vsh is close to c cos θ, where
θ is the angle between the wave normal and mag-
netic field. In this acceleration mechanism, the electric
field parallel to the magnetic field E� in the oblique
shock wave and its integral along the magnetic field,
F = −

∫
E�ds, play essential roles. Some electrons

can get trapped when a negative dip of F is formed in
the end of main pulse. The electrons then oscillate in
the main pulse region and their kinetic energies take
maxima near the position of the peak of F . For this
mechanism, a clear physical picture was given in Ref.
[1] and a theory for the maximum energy was devel-
oped in Ref. [2] under the assumption that the wave
is stationary. In these works, the effects of trapped
electrons on wave evolution were not concerned, and
the time variations of the electron maximum energy
were not studied.

The simulations also demonstrated that once elec-
trons are trapped, they cannot readily escape from the
wave and are trapped deep in the main pulse region,
which indicates that the number of trapped electrons
increases continually with time [2]. In Ref. [3], the
mechanism for the deep trapping was discussed. It was
shown with theory and simulation that if ∂F/∂t > 0 at
particle positions, the parallel energies of the reflected
electrons decrease, causing deep trapping. The reason
for the increase of F is, however, unclear.
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In this paper, we study, with theory and long-
time simulations, the feedback of the trapped and ac-
celerated electrons on the shock wave. We develop a
theory for the field strength including the number of
the trapped electrons as a factor, and compare it with
the simulations. It is found that the trapped elec-
trons strengthen E� and F and that because of this,
the magnitude of F increases with time. These results
lead to the conclusion that the electrons are trapped
deeper and accelerated to higher kinetic energies ow-
ing to the electromagnetic fields that they produce
themselves.

In Sec. 2, we present a theory for effects of
trapped electrons on F . We then discuss how the
change in F affects the motions of trapped electrons
in Sec. 3. In Sec. 4, the theoretical prediction is
confirmed by a one-dimensional (one space coordinate
and three velocity components) relativistic electro-
magnetic particle simulation. Section 5 gives a sum-
mary of our work.

2. Theory for effects of trapped elec-
trons on F
We theoretically study effects of trapped electrons

on parallel electric field in an oblique shock wave. If
the number of the trapped electrons nt increases with
time, the shock wave profile would change slowly with
time. We assume that the shock wave profile at a
time t can be described by a stationary solution for
nt at this time. This assumption would be valid if
the characteristic time of the change in nt is much
longer than that of the shock wave propagation. This
condition can be written as

nt/(dnt/dt)� ∆m/vsh, (1)

where ∆m is the width of the main pulse region, and
vsh is the propagation speed of the shock wave. Sim-
ulation results are consistent with Eq. (1), which will
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be shown in Sec. 4.
We consider a magnetosonic shock wave propa-

gating in the x direction in a external magnetic field
in the (x, z) plane,

Bl0 = Bl0(cos θ, 0, sin θ), (2)

where the subscript l refers to the quantities in the
laboratory frame and the subscript 0 indicates the far
upstream region. We suppose that the wave is station-
ary. Then, in the wave frame, the time derivatives of
the quantities are zero, ∂/∂t = 0, and the Faraday’s
law gives the y and z components of the electric field
as constants;

Ewy = Ewy0 = −(vsh/c)γshBlz0, (3)

Ewz = Ewz0 = 0, (4)

where the subscript w denotes the wave frame and
γsh = (1− v2

sh/c
2)−1/2. For one-dimensional propaga-

tion with ∂/∂y = ∂/∂z = 0, the x component of the
magnetic field is constant,

Bwx = Bwx0 = Blx0. (5)

In the following, we analyze quantities in the wave
frame, for which we omit the subscript w.

By virtue of Eqs. (3)–(5), we write the parallel
electric field E� in the wave frame as

E� = (ExBx0 + Ey0By)/B, (6)

from which the parallel potential F is given as

F = −
∫

dsE� = −
∫ x

x0

dxE�B/Bx0, (7)

where x0 is a certain point in the far upstream region.
This is also expressed, with the electric potential φ, as

F = φ− Ey0

Bx0

∫ x

x0

dxBy. (8)

For the case of no trapped electrons, the expres-
sion for F was given in Ref. [4]. For small amplitude
waves in a cold plasma, F is given as eF ∼ δ2miv

2
A,

where δ is the wave amplitude and vA is the Alfven
speed. For large-amplitude shock waves with δ ∼ 1,
simulation values of F are consistent with the phe-
nomenological relation,

eF ∼ miv
2
ABm/B0, (9)

where Bm is the maximum B.
We here consider the effect of trapped electrons on

F . The trapped electrons generate By because they
move along the magnetic field with parallel speed v� ∼
c in the main pulse region where Bz � B. Assuming
that the current of trapped electrons is given by Jt ∼
(0, 0,−entc), we can estimate, from the z component

of Ampere’s law, the magnitude of By produced by
the trapped electrons as

B(t)
y ∼ −4π

c
Jtz∆h ∼ 4πent∆h, (10)

where ∆h is the half width of the region where the
trapped particles exist and the index (t) indicates the
quantities produced by the trapped electrons.

Even if nt is quite small, the contribution of the
trapped electrons to By can be significant. In order to
show this, we compare the magnitude of B(t)

y and that
of B(0)

y , where the index (0) indicates the quantities
produced by the transmitted electrons. The ratio of
these values is given by

B
(t)
y

B
(0)
y

∼ Jtz

Jez
∼ ntc

nevez
, (11)

where the subscript e denotes the passing electrons.
Because vez is much smaller than c, this ratio can be
great. The contribution of trapped electrons to φ is,
however, negligible if nt is small, because φ(t)/φ(0) ∼
nt/ne.

We thus obtain, from Eqs. (8) and (10), F (t) as

F (t) ∼ −2πEy0

Bx0
nte∆2

h. (12)

If vsh ∼ c cos θ, Eq. (12) gives

eF (t) ∼ nt

2ne0

∆2
hω

2
pe

c2
mec

2 (13)

This indicates that the magnitude of F increases with
nt.

3. Electron motion in nonstationary F
Particle simulation demonstrates that once elec-

trons are trapped in the main pulse region, they can-
not readily escape from it and the number of trapped
electrons nt continually increases with time [2, 3].
Since Eq. (13) suggests that the magnitude of F in-
creases with nt, we here suppose that F gradually
grows with time in association with the increase of nt

and then discuss how the time change of F affects the
motion of trapped electrons.

We assume that By and F change with time, while
other quantities are stationary. From the y and z com-
ponents of equation of motion, we have

vz = − c

eBx0

dpy

dt
− c

Bx0
Ey0 +

Bz

Bx0
vx, (14)

vy =
c

eBx0

dpz

dt
+

By

Bx0
vx. (15)

Substituting Eqs. (14) and (15) into an energy equa-
tion for electrons,

mec
2 dγ

dt
= −eE · v, (16)
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we obtain
d

dt
(γh) = −e

E · B
Bx0

vx, (17)

where h is defined as

h = mec
2

(
1 − vzvshBz0

c2Bx0

)
, (18)

which indicates that h is positive if Bz0/Bx0 is of order
unity [1]. We introduce F defined as [3]

F (x, t) = −
∫ x E(x�, t) · B(x�, t)

Bx0
dx�. (19)

Using the relation

dF

dt
=

∂F

∂t
− E(x, t) · B(x, t)

Bx0

dx

dt
, (20)

we can put Eq. (17) into the following form

dε

dt
= −e

∂F

∂t
(21)

where ε is defined as

ε = γh − eF. (22)

We call ε energy as in Ref. 3. If F is in the region
0 < F < Fm, particles with energies in the region
−eFm < ε < 0 are trapped.

We assume that F at time t is written as

F (x, t) = F (0)(x)[1 + αnt(t)], (23)

where nt(t) is the number density of trapped electrons
at time t, F (0)(x) is given by Eq. (9), and α is of
constant order,

α ∼ 1
nt

F
(t)
m

F
(0)
m

∼ 1
ne0

ω2
pe

|Ωe|2
B0

B
(0)
m

. (24)

Substituting Eq. (23) into Eq. (21), we have

dε

dt
� −eαF (0)(x)

dnt

dt
. (25)

This indicates that if dnt/dt > 0, the energy ε de-
creases, which gives rise to deep trapping of electrons;
just as a particle oscillating in a potential well with
damping. We therefore find that the trapped electrons
become more deeply trapped owing to the electromag-
netic fields that they produce themselves.

The increase of F enhances the acceleration of
trapped electrons. From Eq. (22), We can write γ of
the particle at time t and position x as

γ(x, t) =
ε(t) + eF (x, t)

mec(c + v�Ey0/Bx0)
. (26)

Since ε(t) <∼ 0 for trapped particles and F (x, t) ≤
Fm(t), where Fm(t)[≡ F (xm, t) with xm the center of
the main pulse] is the maximum F at time t, the upper
limit of γ of trapped electrons is given as

γlim(t) =
eFm(t) cos θ

mec(c cos θ − vsh)
, (27)

where we have used v� � c. The upper limit of γ at
time t is proportional to Fm(t).

We now consider the time variation of γ of a
trapped particle. We suppose that the particle gets
trapped at time t0 and its γ takes maximum values
γm at times t1, t2, · · ·, at which the particle is near the
position x = xm with v� � c. The value of γm can
then be estimated from Eq. (26) as

γm(tn) =
[ε(tn) + eFm(tn)] cos θ

mec(c cos θ − vsh)
(28)

where n is an integer. To obtain ε(tn), we integrate
Eq. (21) from t0 to tn, giving

ε(tn) − ε(t0) ∼ −eα�F (0)�[nt(tn) − nt(t0)] (29)

where �F (0)� is the average of F (0) over the main pulse
region. Using the approximation �F (0)� ∼ F

(0)
m /2, we

can write γm(tn) as

γm(tn) ∼ e[Fm(tn) + Fm(t0) + ε(t0)] cos θ

2mec(c cos θ − vsh)
. (30)

From this, we can expect that if Fm increases, γm also
increases.

4. Particle Simulations
In this section, using a one-dimensional (one space

coordinate and three velocities), relativistic, electro-
magnetic particle code with full ion and electron dy-
namics, we simulate an oblique shock wave and con-
firm that the number of trapped particles nt, the mag-
nitude of F , and the maximum energies of electrons
grow with time.

As in the theory in Sec. 2, the shock wave prop-
agates in the x direction in an external magnetic
field B0 = B0(cos θ, 0, sin θ). The propagation an-
gle is set to be θ = 45◦. The total system length
is L = 16384∆g, where ∆g is the grid spacing. The
number of ions and electrons are Ni = Ne � 1.0×107.
The mass ratio is mi/me = 100. The ratio of gyro and
plasma frequencies of electrons is |Ωe|/ωpe = 3.0 in
the upstream region. The light speed is c/(ωpe∆g) =
4.0 and the electron and ion thermal velocities in
the upstream region are vTe/(ωpe∆g) = 0.5 and
vTi/(ωpe∆g) = 0.05, respectively. The Alfven speed
is then vA/(ωpe∆g) = 1.2. We present the simulation
results for the shock wave with vsh being 96% of the
c cos θ.

Figure 1 shows electron phase space plots (x, γ)
and magnetic field profiles of a shock wave at times
ωpet = 480 and 1300. In the top panel (ωpet = 480),
we find some electrons are trapped and accelerated to
ultrarelativistic energies with γ > 50 in the main pulse
region, 478 < x/(c/ωpe) < 485. At ωpet = 1300, more
particles are trapped and are accelerated to higher
energies; the maximum value of γ reaches γ � 200.
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Figure 2 displays the profiles of F (dashed line)
and Bz (solid line). F and B take their maximum
values at almost the same positions. The peak value
of F at ωpet = 480, at which the number of trapped
particles is small, is observed to be eF/(mec

2) ∼ 9.
This is in good agreement with the theoretical value,
eF/(mec

2) ∼ 7, which was obtained from Eq. (9)
using nt � 0 and the observed value of Bm. At ωpet =
1300, at which more electrons are trapped, the peak
value of F is greater.

In order to compare the simulation and the the-
ory for F , we plot in Fig. 3 the time variations of the
maximum values of φ and F and of the number den-
sity of trapped electrons. (Here, nt is approximated as
nt/∆m, where ∆m is the width of the main pulse re-
gion and Nt is the number of energetic electrons with
γ > 10 in the main pulse region; the trapped electrons
can have such high energies, while the transmitted
ones have energies of, at most, γ = 10.) The value
of φm is almost constant although nt increases with
time. The magnitude of F , however, increases with an
increase in nt. The increment of Fm from ωpet = 400
to 1300 is observed to be e∆Fm/(mec

2) � 3, which is
about 30% of the value estimated from Eq. (13). Sub-
stituting the observed value of the increment of nt for
this period, nt/ne0 ∼ 5 and half width of the region
where the trapped particles exsit, ∆h ∼ 2c/ωpe, in Eq.
(13) gives e∆Fm/(mec

2) ∼ 10. It is thus clearly shown
that Fm grows owing to the effect of the trapped elec-
trons. [The oscillations of φm, Fm, and nt with the
period ωpet � 70 [� (2π/3)(ωpe/Ωi)] are due to the

Fig. 1 Phase space plots (x, γ) of electrons and magnetic
field profiles at ωpet = 480 and 1300.

Fig. 2 Profiles of Bz (solid lines) and F (dashed lines) at
ωpet = 480 and 1300.

ion reflection at the shock front [5, 6, 7].]
From Fig. 3, we can confirm that the assumption

used in the theory is appropriate, because condition
(1) is satisfied. Using the observed value of nt, we
can estimate nt/(dnt/dt) ∼ 1000/ωpe, which is much
greater than ∆m/vsh ∼ 10/ωpe.

We now present results showing that the increase

Fig. 3 Time variations of the maximum values of φ and
F , and the number density of trapped electrons,
nt. The values of Fm and nt increase with time,
while φm is almost constant.
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of F can enhance the electron acceleration. Figure
4 shows time variations of the observed value of the
maximum γ of the electrons (black line). The max-
imum γ increases on average with time, due to the
increase of Fm. The gray line in Fig. 4 indicates the
theory (27) for the upper limit of γ at time t, where
we have substituted the observed value of Fm(t) in Eq.
(27) and have averaged over the time period of the am-
plitude oscillation due to the ion reflection, ωpet = 70.
The profiles of γm and γlim are similar and their values
are in the same order of magnitude. We can therefore
confirm that the increase of γm is caused by that of
Fm.

We next confirm that the theory (28) can explain
the simulation result. Figure 5 shows the trajectory
of a trapped electron, where the time variations of
x − xm, γ, and v� are plotted. The electron encoun-
ters the shock wave at ωpet � 300. At ωpet � 400,
it is reflected at the end of the main pulse and gets
trapped in the main pulse region. It moves forward
relative to the shock wave with v� � c. Its kinetic en-
ergy becomes maximum near the center of the main
pulse, x � xm, at ωpet = 700. The electron is then
reflected backward in the shock transition region at
ωpet � 1000. It soon reaches the end of the main pulse
and is again reflected forward. Its kinetic energy be-
comes maximum at ωpet � 1400. Note that the second
peak of γ at ωpet � 1400 is higher than the first one
at ωpet � 700. This is due to the increase of F . The
difference between the two maximum γ’s, ∆γm � 16,
can be explained by Eq. (28); substituting the ob-

Fig. 4 Time variations of the maximum value of γ of elec-
trons. The simulation result (black line) is similar
to the theory (gray line) for the upper limit of γ
given by Eq. (25).

served value of the increase of Fm from ωpet = 700 to
ωpet = 1400 in Eq. (28), we have ∆γm � 20.

Fig. 5 Time variations of x − xm, γ, and v� of a trapped
electron.

5. Summary
Amagnetosonic shock wave propagating obliquely

to an external magnetic field can trap electrons and
accelerate them to ultrarelativistic energies. Once the
electrons are trapped, they cannot readily escape from
the wave and the number of trapped electrons contin-
ually increases with time. The parallel electric field
and its integral F along the magnetic field play cru-
cial roles in this trapping and acceleration mechanism.

In order to investigate the effect of the trapped
electrons on electromagnetic fields in a shock wave,
we derive a theoretical expression for F including the
number of the trapped electrons nt as a factor. It
is found that the magnitude of F increases with nt.
We then suggest that owing to the increase of F , the
electrons are trapped deeper and are accelerated to
higher kinetic energies.

Particle simulations demonstrate that both F and
nt increase with time and that associated with this
increase, the kinetic energies of the trapped electrons
grow. The theoretical predictions have thus been ver-
ified by the simulations.

We note that the theory and simulations are both
one dimensional in the present and previous studies.
As future work, it would be important to study mul-
tidimensional effects on the trapping and acceleration
mechanisms.
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