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The electric field parallel to the magnetic field, E∥, in nonlinear magnetosonic waves is analytically
studied. The theory shows that E∥ can be strong. Then, with use of one-dimensional, fully kinetic,
relativistic, electromagnetic, particle simulations and with test particle calculations, the effect of E∥ on
particle acceleration in shock waves is examined for three different mechanisms: incessant acceleration
of relativistic ions, acceleration of trapped electrons, and positron acceleration along the magnetic field.
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1. Introduction
In the ideal magnetohydrodynamics (MHD), the

electric field parallel to the magnetic field is zero,
and it was generally thought that the parallel elec-
tric field E∥ is quite weak in MHD phenomena in
high-temperature plasmas [1, 2]. Recently, however,
it has been shown that the parallel electric field can
be strong in nonlinear magnetosonic waves [3].

In this paper, we briefly review the theory for the
parallel electric field and study the effect of parallel
electric field on particle acceleration in shock waves,
with particle simulations [4, 5] and test particle calcu-
lations.

In this method, we first obtain the electromag-
netic fields of a shock wave from a particle simulation,
and then, using these fields, we carry out test particle
calculations to analyze the motions of relativistic ions,
electrons, and positrons. The shock speed vsh is taken
to be close to c cos θ, where θ is the angle between the
external magnetic field and wave normal. We are con-
cerned with the case vsh ∼ c cos θ because it is known
that strong particle acceleration takes place in this
condition; i.e., 1) nonthermal energetic ions can be in-
cessantly accelerated near the shock front owing to the
relativistic effect that the particle momentum can in-
crease indefinitely while the particle speed is bounded
by the speed of light c [6], 2) some electrons are re-
flected near the end of the main pulse of a shock wave
and then accelerated and trapped in the main pulse
region [7], and 3) positrons can be accelerated along
the magnetic field in the shock transition region [8].
(Positrons could be present around pulsars [9]-[12].)
We compare the test particle motions calculated with
two different methods; in the first method, the total
electric field E is used in the relativistic equation of
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motion, while in the second method, E∥ is omitted.
These studies confirm that in the acceleration of

relativistic ions the parallel electric field becomes less
important as the particle energy increases. For the
acceleration of positrons and trapped electrons, how-
ever, E∥ plays an essential role.

2. Overview of the Theory of Parallel
Electric Field
The electric field parallel to the magnetic field

was thought to be weak in MHD phenomena in high-
temperature plasmas. In fact, from one of the basic
equations of the ideal MHD,

E +
v × B

c
= 0, (1)

one finds that the parallel electric field is zero,

E∥ =
E · B

B
= 0. (2)

The integral of E∥ along the magnetic field,

F = −
∫

E∥ds, (3)

is thus also zero. The quantity F is referred to as the
parallel pseudo potential in this paper.

In the two-fluid model, the parallel electric field
in nonlinear magnetosonic waves is given as

E∥ = −ΓeTe

e

∂

∂s

(
n1

n0

)
, (4)

where Te is the electron temperature, Γe is the specific
heat ratio, s is the length along the magnetic field, and
n0 and n1 are the equilibrium and perturbed plasma
densities, respectively [13]. One can obtain Eq.(4)
with use of the conventional reductive perturbation
method [14, 15]. Furthermore, by integrating Eq. (4),
one finds the parallel pseudo potential as

eF = ΓeTe
n1

n0
∼ ϵ ΓeTe, (5)
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where ϵ is the wave amplitude. The magnitude of
F is determined by the electron temperature and is
proportional to the wave amplitude.

Some particle simulations, however, show that eF
far exceeds the electron temperature; for instance,
the magnitude of eF shown in Ref. [7], which dis-
cussed the acceleration of electrons trapped by a shock
wave, is roughly a half of the electric potential and is
∼ 10mec

2. The electron temperature alone cannot
explain the large parallel pseudo potential observed in
the particle simulations.

In order to see the effect of the magnetic field on
E∥, we consider the case in which the plasma temper-
ature is zero (Te = Ti = 0) and carry out higher order
calculations with the reductive perturbation method,
introducing the stretched coordinates:

ξ = ϵ1/2(x− vAt), (6)

τ = ϵ3/2t, (7)

where vA is the Alfvén speed. In this cold plasma
model, the parallel electric field and parallel pseudo
potential are found to be

eE∥ = miv
2
A cos θ

(
c

ωpe

)2
∂3

∂ξ3

Bz1

B0
, (8)

eF = −miv
2
A

(
c

ωpe

)2
∂2

∂ξ2

Bz1

B0
∼ ϵ2miv

2
A. (9)

Here, the waves are supposed to propagate in the x

direction in an external magnetic field in the (x, z)
plane, B0 = B0(cos θ, 0, sin θ). We have thus found
that in small-amplitude pulses, the magnitude of the
parallel pseudo potential is eF ∼ ϵ ΓeTe in warm plas-
mas and is eF ∼ ϵ2miv

2
A in cold plasmas.

Furthermore, for large-amplitude waves with ϵ ∼
O(1) (shock waves), the relation

eF ∼ ϵ(miv
2
A + ΓeTe), (10)

explains the simulation results for both warm and cold
plasmas [3]. This indicates that the parallel electric
field can be quite strong in nonlinear magnetosonic
waves.

3. Incessant Acceleration of Relativistic
Ions
If the velocity v of an ion is so high that it exceeds

the shock speed vsh and the gyroradius of the particle
is much greater than the width of the shock transition
region, this particle can move back and forth between
the shock wave and the upstream region in association
with its gyromotion. This particle can gain energy
from the transverse electric field when it is in the shock
wave, because the gyromotion in the shock wave is
nearly parallel to the transverse electric field in the
shock wave. If the particle enters the shock wave at

t = tin and goes out to the upstream region at t = tout,
then the increment of its Lorentz factor γ in the period
t = tout − tin is given as

δγ =
2qip1⊥E1⊥

m2
i c

2Ωi1
sin

(
Ωi1(tout − tin)

2γ

)

+
qi

mic2

∫ tout

tin

v∥E∥dt, (11)

where Ωi is the nonrelativistic ion gyrofrequency; the
subscript ⊥ and 1, respectively, refer to vector compo-
nents perpendicular to B and quantities in the shock
wave [6]. Furthermore, if vsh ∼ v∥ cos θ, where v∥ is
the parallel velocity of the particle, this particle can
move with the shock wave for a while. Because of the
structure of the magnetic field in the shock transition
region, the momentum parallel to the magnetic field,
p∥, increases when the particle enters and then goes
out from the shock wave to the upstream region; i.e.,
p∥(tout) − p∥(tin) > 0. The parallel velocity there-
fore rises, and v∥ cos θ becomes greater than the shock
speed vsh. As a result, the particle that was gyrating
near the shock transition region therefore goes away
from the shock wave to the upstream region, and the
interaction with the shock wave ceases.

If the shock speed vsh is close to c cos θ, how-
ever, some particles would move with the shock wave
for long periods of time, much longer than their rel-
ativistic gyroperiods. Although the momentum can
increase indefinitely, the velocity is bounded by the
speed of light c. Because of this relativistic effect,
particles cannot easily go faster than the shock wave
if vsh ∼ c cos θ. Particles can move with the shock
wave for long periods of time and repeatedly suffer
energy jumps given by Eq. (11) in association with
their gyromotion.

This acceleration mechanism has been studied
with theory and particle simulations in Ref. [6]. In
the theoretical analysis, the effect of the parallel elec-
tric field, such as the second term on the right-hand
side of Eq. (11), was ignored, because the parallel elec-
tric field was thought to be weak in MHD phenomena
in high-temperature plasmas.

We now quantitatively examine the effect of the
parallel electric field with test particle calculations;
that is, we carry out a shock simulation with one-
dimensional (one space coordinate and three veloci-
ties), fully kinetic, fully electromagnetic particle code
and then, by using the electric and magnetic fields ob-
tained by the simulation, we follow test particle orbits.
In the test particle calculations, we adopt two differ-
ent methods. In the first method, we use the total
electric field in the relativistic equation of motion,

dp

dt
= eE + e

v × B

c
, (12)

while in the second method the parallel electric field
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Fig. 1 Time variations of the Lorentz factors γ of test
particles that are calculated with the total electric
field (solid lines) and with the perpendicular elec-
tric field (dotted lines). The initial Lorentz factors
are γ0 = 40 in the upper panel and γ0 = 5 in the
lower panel. The difference between the solid and
dotted lines is smaller in the higher energy case
(upper panel) than in the lower energy case (lower
panel).

is omitted in the equation of motion,

dp

dt
= eE⊥ + e

v × B

c
, (13)

where E⊥ is the perpendicular electric field. We then
compare the motions obtained by these two methods.

The parameters of the particle simulation are as
follows: The ion-to-electron mass ratio is mi/me =
400; the speed of light is c/(ωpe∆g) = 10, where
∆g is the grid spacing; the external magnetic field
is in the (x, z) plane with θ = 60◦ with its strength
being |Ωe|/ωpe = 3.1. The Alfvén speed is thus
vA/(ωpe∆g) = 1.55.

The test particles are initially put in the upstream
region with the momentum distribution function

f(p) =
N

4πp2
0

δ(p − p0), (14)

where N is the number of test particles, and p0 is
related to the initial Lorentz factor through γ0 = [1 +
p2
0/(m2

i c
2)]1/2.

The upper panel of Fig. 1 shows the time varia-
tions of the Lorentz factors γ of relativistic test ions,
in which the solid and dotted lines, respectively, repre-
sent the values calculated with use of the total electric

field E and with the perpendicular electric field E⊥.
Their initial positions and velocities are the same, with
γ0 = 40. These particles suffer energy jumps seven
times, and the two Lorentz factors exhibit quite sim-
ilar behavior. Their difference γ − γ⊥, where γ⊥ is
the Lorentz factor obtained from E⊥, is quite small;
(γ−γ⊥)/γ = 1.4×10−2 immediately after the seventh
jump.

The lower panel of Fig. 1 shows the same figure
for a lower energy case, γ0 = 5. Even in this case,
the two lines are quite close. Their difference, (γ −
γ⊥)/γ = 5.9 × 10−2, however, is slightly larger than
that in the higher energy case.

These results indicate that the effect of the paral-
lel electric field becomes small as the particle energy
rises. The approximation ignoring E∥ in the theoret-
ical analysis of energetic-particle motions [6] is there-
fore valid.

4. Acceleration of Trapped Electrons
Some electrons are reflected in the end of the main

pulse region (first large pulse) in an oblique shock
wave. These particles are then trapped in the main
pulse region and are accelerated to ultrarelativistic
energies [7]. The energy of an accelerated electron
is given as

mec
2γ =

eϕ

1 − (vsh/c)(Bz0/Bx0)
, (15)

in the wave frame, where ϕ is the electric potential.
The Lorentz factor γ becomes especially large when
1 ∼ (vsh/c)(Bz0/Bx0); this relation can be written as
vsh ∼ c cos θ in the laboratory frame. The electron re-
flection, which triggers the strong acceleration, occurs
when the parallel pseudo potential F becomes small
in the end of the main pulse region. The parallel elec-
tric field thus plays a crucial role in this acceleration
mechanism.

To clearly see the effect of E∥, we again perform
the test particle calculations with use of the total elec-
tric field, Eq. (12), and with the perpendicular electric
field, Eq. (13).

The top panel of Fig. 2 shows the phase space
(x, γ) of electrons in the particle simulation, while the
second and bottom panels show, respectively, the test
electrons calculated with E and with E⊥. In the top
and second panels, many electrons are trapped and
have ultrarelativistic energies in the main pulse re-
gion of the shock wave. On the other hand, in the
bottom panel, no electrons are trapped there. It is
thus concluded that without the parallel electric field
the electron reflection in the end of the main pulse and
resultant particle acceleration does not occur.
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Fig. 2 Electron phase space plots (x, γ) and magnetic-field
profiles (solid lines). The top panel shows the result
of a particle simulation, while the second and bot-
tom panels display test electrons calculated with E
and with E⊥, respectively. The phase spaces of the
top and second panels are quite similar, with many
high-energy electrons near the shock front. In the
bottom panel, there are few high-energy electrons.

5. Positron Acceleration along the
Magnetic Field
In an electron-positron-ion plasma, oblique shock

waves can accelerate positrons in the direction paral-
lel to the magnetic field [8]. These positrons stay in
the shock transition region and gain energy from the
parallel electric field. Under the assumption that

d(γv)
dt

≃ v
dγ

dt
, (16)

and vx ≃ vsh, we obtain, after some algebra, the
zeroth-order solution, in which vy is small and vx/vz =
Bx0/Bz0. The time rate of change of γ is given as

1
Ωp0

dγ

dt
=

c cos θ

vsh

(E · B)
(B · B0)

, (17)

Fig. 3 Phase spaces of positrons in a particle simulation
(top panel), test positrons calculated with E, and
test positrons calculated with E⊥. The bottom
panel has no high-energy positrons.

where Ωp0 is the nonrelativistic positron gyrofre-
quency in the upstream region. The energy increase
rate is proportional to the parallel electric field.

To examine the positron acceleration, we also
carry out test particle calculations with use of Eq.
(12) and with use of Eq. (13). Figure 3 shows the
phase spaces of the positrons in a particle simulation
(top panel), test positrons calculated with the total
electric field (second panel), and test positrons cal-
culated with the perpendicular electric field (bottom
panel). The phase space plots of the top and second
panels are quite similar, while in the bottom panel we
find no high-energy positrons, indicating that in the
absence of the parallel electric field the acceleration of
positrons along the magnetic field does not occur.

6. Summary
We have described the parallel electric field in

nonlinear magnetosonic waves and examined the effect
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of E∥ on particle acceleration. Specifically, we have
investigated the three acceleration mechanisms: rela-
tivistic ions [6], trapped electrons [7], and positrons
[8]. To do this, we first performed particle simula-
tions for shock waves, and then, using the electric and
magnetic fields obtained from the shock simulation,
we followed the orbits of test particles. For the test
particle calculations, we have adopted two methods; in
the first method we have used the total electric field in
the equation of motion while in the second method we
have used the perpendicular electric field. The results
of the two methods are compared. These studies con-
firm that the parallel electric field is unimportant in
the acceleration of relativistic ions if their energies are
sufficiently high. The reflection of electrons does not
occur in the absence of E∥; thus the trapping and ac-
celeration of electrons does not occur either. Positron
acceleration along the magnetic field is not observed
without E∥.
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