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It is shown theoretically and computationally that helical magnetic field, produced by continuous
winding helical coils and without the toroidal coil, can sustain MHD stable high beta plasma. Pressure
driven toroidal current (bootstrap current) cancels the external magnetic field and reduces the MHD
potential energy, depending on the plasma beta values. Ramp-up of heating power input induces
bootstrap transition to higher beta plasmas with flat-top pressure profiles. Helical pitch parameter
dependence of MHD stability is analyzed.
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1. Introduction
The existence of the MHD stable high beta core

plasma lead the way for the realization of economic
fusion power systems. The LHD experimental results
of achieving average beta value 5% without the beta
collapse suggests the possibility of the helical equilib-
riums with ultrahigh beta MHD stable core plasmas.

MHD stability of plasma is determined by the
MHD potential energy(= W ), which is the sum of
plasma thermal energy(= WT ) and the magnetic filed
energy(= WB),

W =
�
dV

�
3
2
P +

1
2μ0

B2

�
= WT +WB . (1)

The integration domain is extended not only to the
plasma volume but also to the outer region of external
coils.

The diamagnetic current reduces the exter-
nally applied magnetic field(= Bext) at the plasma
volume(= Vp). The pressure equilibrium relation and
the definition of the plasma beta value(= β) lead the
expression for variation of the MHD potential energy
δW as follows,

δW

W0
≡ W − W0

W0
=

β

2(β + 1)
> 0 , (2)

where P0 and B0 are the pressure and magnetic field
in the plasma region, and β ≡ P0/

�
B2

0
2μ0

�
,

P0 +
B2

0

2μ0
=

B2
ext

2μ0
,

W0 = Vp
B2

ext

2μ0
, W = Vp

�
3
2
P0 +

B2
0

2μ0

�
.

Therefore, the diamagnetic current cannot conduct to
the MHD stable configuration as shown in eq.(2).

On the other hand, the toroidal current driven
by plasma pressure (the bootstrap current) produces
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magnetic field outside the plasma column, which di-
minish the magnetic field outside of external coils.
When the MHD potential energy reduction

δW < 0 (3)

is caused by the cancellation of the magnetic field,
the bootstrap transitions to MHD stable high beta
equilibrium become possible.

Bootstrap current is usually created by the ba-
nana orbit particles, which comes from the toroidal
effect. The density gradient of banana particles pro-
vides the bootstrap current[1]. In a tokamak the boot-
strap current Jbs is simply given by

Jbs ≈ �1/2 1
Bθ

dP
dρ

(4)

where � = a/R is the inverse aspect ratio and ρ is the
minor radius of the torus. R.J.Bickerton, J.W.Connor
and J.B.Taylor have pointed out that in low collision
frequency regime, the enhanced diffusion is associated
with the currents which flow parallel to the magnetic
field; not only are these current much larger than
the Pfirsch-Sclüter currents, but they are also unidi-
rectional. They have proposed a bootstrap tokamak
which operates in steady state by diffusion driven net
toroidal current without any external driving force [2].

In the straight helical system, we have � = 0, and
then Jbs described in eq.(4) reduce to zero. However,
the bootstrap currents described in the paper have
still finite value even in a straight helical system.

Pfirsch-Sclüter currents are derived from the fol-
lowing relation

0 = ∇ ·
�

B × ∇P

B2

�
+∇ ·

�
B

|B|J�

�
. (5)

which shows the condition of the no charge accumula-
tion induced by the the imbalance of the net outward
force due to the larger surface area at the larger ma-
jor radius. For the case of usual axisymmetric system
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with concentric magnetic surfaces with the rotational
transform ι,

Bφ =
R

R+ ρ cos θ
B0 ,

ι

2π
=

RBθ

ρBφ
, (6)

the eq.(5) can be reduced to

ιB0

2πR
∂

∂θ

�
J�
Bφ

�
� −dP

dρ
2

RB0
sin θ , (7)

and can be integrated as

J� � C ·Bφ +
4π
ιB0

dP
dρ

cos θ , (8)

where C is the integration constant of the differential
equation (7). If we set C = 0, the expression eq.(8) is
the expression for the Pfirsch-Sclüter currents JPS [3],

JPS =
4π
ιB0

dP
dρ

cos θ . (9)

The integration constant C is determined from
not eq.(5) but from the force balance condition in the
ρ direction. In axisymmetric torus, MHD equation
∇P = J × B determines the plasma current J as
follows [4],

J = P �(Ψ) r eφ +
I �(Ψ)
2π

B . (10)

Then the pressure driven equilibrium current, the first
term of the RHS of the eq.(10), is expressed as

J� =
Bφ

|B|P
�(Ψ)r � 1

RBθ

dP
dρ
(R+ ρ cos θ) , (11)

where we have used the simplified expression

P �(Ψ) =
dP
dρ

�
dΨ
dρ

�−1

� 1
RBθ

dP
dρ

. (12)

The expression eq.(11) determines the integration con-
stant C as

C � 1
B0Bθ

dP
dρ

. (13)

Then the expression eq.(8) becomes as

J� =
1
Bθ

dP
dρ

R

R+ ρ cos θ
+
4π
ιB0

dP
dρ

cos θ

� 1
Bθ

dP
dρ

+
2π
ιB0

dP
dρ

cos θ , (14)

where we have used the expression for the rotational
transform eq.(6). The first term of the RHS of eq.(14)
is net toroidal currents similar to the diamagnetic cur-
rent produced by the poloidal magnetic field Bθ and
the plasma pressure gradient in the ρ direction. Since
this currents produce magnetic field mainly outside
the plasma column without producing the magnetic
field inside the plasma column, we call this pressure
driven toroidal net currents is also one of the boot-
strap currents. The second term of the RHS of term

eq.(14) prevent the net charge accumulation due to
the imbalance of the net outward force. This expres-
sion is just same to the current profile given by the
second term of the eq.(11), but the factor 2 smaller
compared to the traditional expression of the Pfirsch-
Sclüter currents eq.(9). The net charge accumulation
du to the pressure imbalance is partially prevented by
the pressure driven toroidal net current.

In the paper, we have developed a new numerical
scheme to solve the equilibrium based on the Biot-
Savart’ law. Since this scheme can compute the mag-
netic field at the region including inside and outside
of helical coils, MHD potential energy W can be cal-
culated, simultaneously.

We have analyzed the equilibrium and the stabil-
ity of straight helical systems, to verify based on the
first principle that the LHD type helical magnetic field
configuration can sustain MHD stable high beta core
plasmas.

Straight helical coil system and the rotating he-
lical coordinate system are explained in §2. New nu-
merical scheme to solve MHD equilibrium and plasma
model are explained in §3. To analyze the role of
bootstrap current for the MHD stability, a new cri-
terion for the MHD potential energy is developed in
§4. Bootstrap transition from peaked pressure profile
to flat-top pressure profile is analyzed in §5. In §6, it is
shown that small value of the helical pitch parameters
is favorable for the high beta plasma confinement. §7
is devoted to the summary and discussions.

2. Straight Helical System

Fig. 1 Straight helical coils composed of 3 layers(Hc-
O, Hc-M, Hc-I) and the rotating helical coordi-
nate system(X, Y, ζ). Helical pitch parameter (=
γ)is controlled by the distribution of coil currents
among these three layers.

Straight helical system has symmetry and MHD
equations are possible to be solved without approxi-
mations. Figure 1 shows an example of straight he-
lical coils and the rotating helical coordinate system
(X,Y, ζ), which rotates in synchronization with them.
X, Y and ζ are for the directions of the long axis, short
axis and magnetic axis of magnetic surfaces, respec-
tively. Under the rotating helical coordinate system,
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ζ dependency disappears in a helical magnetic field.
An important index of a helical coil system is a

helical pitch parameter(= γ), which is defined by the
product of the radius of current distribution center(=
ac) and the axial wave number of the helical coil
system(= k),

γ ≡ ac × k (15)

We have assumed in the following analysis that
the size and the configuration of the helical coils are
similar to those of the LHD[5]. Table 1 shows typical
examples of the coil currents and of the magnetic field
parameters.

Table 1 Coil currents and helical pitch parameters.

γ |Bax| coil current(kA× turns)
(T) Hc-O Hc-M Hc-I

1.3817 2.538 33× 150 0× 150 0× 150
1.2538 2.538 11× 150 11× 150 11× 150
1.1221 2.538 0× 150 0× 150 33× 150

3. Equilibrium Analysis
Ideal MHD equation ∇P = J × B can be in-

tegrated along the magnetic field B and the plasma
current J . Arbitrary functions P (Ψ) and I(Ψ) are in-
troduced and plasma current is expressed as follows,

J =
1
μ0

I �(Ψ)B + P �(Ψ)

⎛
⎝

−k Y
kX

1

⎞
⎠ , (16)

where P (Ψ) is the plasma pressure distribution. The
first term of the right-hand side of eq.(16) is the driven
current term, which is independent to the plasma
pressure. X and Y components of the second term
of eq.(16) are the diamagnetic currents, which pro-
duce magnetic field on the inside of the plasma col-
umn, mainly. The ζ components of the second term
of eq.(16) is the bootstrap currents, which produce
magnetic field on the outside of the plasma column,
mainly.

Magnetic fieldB, vector potentialA and the mag-
netic flux function Ψ can be calculated by Biot-Savart’
law as follows,

B(r) =
μ0

4π

�
d3r�

�
(r� − r)× J s(r�)

|r� − r|3
�
,(17)

A(r) =
μ0

4π

�
d3r�

�
J s(r�)
|r� − r| −

J s(r�)
|r�|

�
,(18)

Ψ(r) = Aζ + k (XAY − Y AX) , (19)

J s(r�) ≡ J(r�) + Jc(r�),

where Jc(r�) is the current density of helical coils.
Because the flux function Ψ is a linear function

of the vector potential A, Ψ is given by the sum of
contribution from the plasma current(= Ψp(Ψ)) and
contribution from the helical coil currents(= Ψc),

Ψ = Ψp(Ψ) + Ψc . (20)

Plasma equilibrium computations is reduced to solve
eq.(20) self-consistently for Ψ. We have confirmed
that relaxation scheme and Newton iteration method
are possible to solve eq.(20), treating the separatrix
position of Ψ as an unknown parameters.

In the following, we assume that the driven cur-
rent is not present (I �(Ψ) = 0). The pressure profile
P (Ψ) is assumed to be

P (Ψ) = βax
B2

ax

2μ0

3�
i=1

Pi exp

�
−D

�
Ψ
Ψs

�i
�

P1 + P2 + P3
(21)

where βax, P1, P2, P3 and D are some constants. Bax

and Ψs are the magnetic field on the magnetic axis
and the value of Ψ at the separatrix, respectively.

When P1 = 1 and P2 = P3 = 0, the pressure pro-
file become a peaked profile and the bootstrap currents
distribute in a similar profile, also. When P1 = 0, the
pressure profile become a flat-top profile and the boot-
strap currents become zero on the magnetic axis. The
bootstrap currents distribute in a surface current type
profile.

4. Stability Analysis
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Fig. 2 The field intensity distribution(Bζ : up) and the
magnetic flux function(Ψ: down), in a helical coil.

Stability analysis is based on the energy conser-
vation law for the ideal MHD equations[6],

∂

∂t

�
1
2
ρv2 +

3
2
P +

1
2μ0

B2

�

= −∇
��
1
2
ρv2 +

5
2
P

�
v +

1
μ0

E × B

�
, (22)

where v, ρ and E are fluid velocity, mass density and
electric field, respectively.

The conservation lows eq.(22) shows that W,

W =
�
dV

�
3
2
P +

1
2μ0

B2

�
≡ WT +WB (23)

is the MHD potential energy, andW minimum config-
uration is an MHD stable equilibrium. To analyze the
role of the bootstrap current to the MHD stability, the
integral domain of eq.(23) should be extended to the
region outside of the helical coils. For the computation
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of the MHD potential energy W , we have developed
a magnetic field calculation code which can compute
accurately the field intensity inside the helical coils.
Numerical example of field intensity distributions in-
side the helical coil is shown in Fig.(2).

MHD stability of an equilibrium is evaluated by
the amount of the decreased MHD potential energy
δW ,

δW = W − W0, W0 =
�
dV

�
1
2μ0

B2
vac

�
(24)

where Bvac is the vacuum magnetic field and W0 is
the MHD potential energy of the vacuum state. When
δW < 0, transition to vacuum state is energetically-
prohibited and beta collapse of core plasma will not
occur. Core plasma develops to a minimum state of
W under the imposed constraints.

5. Bootstrap Transition to Flat-Top
Pressure Profile
In first, we compare the equilibrium and its sta-

bility, for the case of peaked pressure profile and for
the case of flat-top pressure profile. The helical pitch
parameter is set to one of the standard value of the
LHD (γ = 1.2538). Pressure distributions for both
cases are assumed to be the following form,

P (Ψ) = βax
B2

ax

2μ0
exp

�
−7

�
Ψ
Ψs

�i
�

(25)

i = 1 ( 2 ) for peaked (flat-top) profile.

Pressure profiles and the bootstrap current distribu-
tions under the vacuum magnetic field are shown in
Fig.3.

We have calculated variations of MHD potential
energy( = δW ) and beta value at the magnetic axis
(= βax), increasing the stored energy WT (Fig. 4).

Peaked pressure profile can reach stably to high
beta equilibrium with relatively small amount of
stored energy, until the decrease of the MHD poten-
tial energy reverse (WT � 0.77MJ/m). When heating
input is increased much more, peaked pressure profile
equilibrium become unstable. Flat-top pressure pro-
file, on the other hand, is more stable, and can increase
the stored energy almost 3 times of the level of peaked
profile case (WT � 2.12MJ/m).

Bootstrap transition from peaked pressure profile
to flat-top pressure profile will be occur, when suffi-
cient heating input is present.

6. Helical Pitch Parameter Dependency
of High Beta Equilibrium

Helical pitch parameter, γ defined by eq.(15) is an
important index of a helical coil system. We study the
pitch parameter dependency of high beta equilibrium
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Fig. 3 Pressure P , bootstrap current Jζ , flux functionΨ
and field intensity |B| along the long axis X of the
magnetic surface. (a) and (b) are for the case of
peaked and flat-top pressure profiles, respectively.
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Fig. 4 Variation of MHD potential energy and beta value
at the magnetic axis. Abscissa represent the plasma
thermal energy stored in the magnetic surface.

in the case of flat-top pressure profile given by eq.(26).

P (Ψ) = βax
B2

ax

2μ0
exp

�
−7

�
Ψ
Ψs

�2
�

(26)

Numerical results are summarized in Fig.5.
When γ is large, the size of the magnetic surface

become large, since the axial magnetic field(= Bζ) is
increased relatively. However, the ability of MHD sta-
bility decreases as suggested by eq.(2). This tendency
is shown by the plot of MHD potential energy δW for
the case of γ = 1.3817 in Fig.5.

When γ is small, the size of the magnetic surface
become small, since the axial magnetic field decreased
relatively. However, the ability of MHD stability in-
creases since the role of bootstrap current is increased.
This tendency is shown by the plot of MHD potential
energy δW for the case of γ = 1.1221 in Fig.5.

121

T. Watanabe and A. Sagara,  Bootstrap Transition to High Beta Equilibrium in Helical System



−0.20

−0.15

−0.10

−0.05

0

0 0.5 1.0 1.5 2.0 2.5 3.0
 WT ( MJ / M)

δ 
W

 / 
W

0

γ = 1.1221

γ = 1.2538

γ = 1.3817

0

50

100

150

200

 βA
X

 ( %
 )MHD STABLE

MHD UNSTABLE

γ = 1.1221
γ = 1.2538

γ = 1.3817

Fig. 5 Variation of MHD potential energy and beta value
at the magnetic axis. Abscissa represent the plasma
thermal energy stored in the magnetic surface.

Structure of vacuum magnetic field is shown in
Fig.6 (a) and (b) for the case of γ = 1.1221. Clear-
ance between helical coils and the last closed flux sur-
face are very wide, though the plasma volume is small
(Vlcfs � 18.6m3: reduced value for the LHD).

Next, we show the MHD stable ultrahigh beta
equilibrium, which has the minimum MHD potential
energy in Fig.6 (c) and (d), sustained in this mag-
netic field (γ = 1.1221). We have confirmed that
the size of the magnetic surface become very large
(Vlcfs � 45.1m3: reduced value for the LHD). Mag-
netic field intensity is very much reduced in the outer
region of helical coils by sustaining of high beta plasma
(compare Fig.6(b) and (d)). The reduction of total
magnetic field energy decreases the MHD potential
energy and realize the sustainment of MHD stable ul-
trahigh beta plasma. Beta value on the magnetic axis
reach to βax � 176%.

Figure 7 shows profiles of equilibrium quantities
along the long axis of magnetic surface for the case of
βax = 176%.

Figure 7(b) shows that steep pressure gradient is
primarily sustained by the magnetic well, shown by
the graph of the specific volume U . Remaining pe-
ripheral pressure gradient should be sustained stably
by high magnetic shear, shown by the graph of the
rotational transform ι/2π.

7. Summary and Discussions
We have developed a new numerical scheme to

solve MHD equilibrium using Biot-Savart’ law. This
scheme can compute the equilibrium magnetic field of
inner and outer region of the magnetic surface. Fur-
thermore, we have developed a new numerical scheme
to compute the MHD potential energy, which can eval-
uate the role of bootstrap current for the MHD sta-
bility of core plasma.

We have concluded that LHD type magnetic field
configuration, which is produced by continuous wind-
ing helical coils and without the toroidal coil, can
sustain MHD stable ultrahigh beta plasma. The
MHD potential energy can be decreased by the pres-
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Fig. 6 Magnetic field structures for the case of γ = 1.1221.
(a), (b) are for vacuum magnetic field and (c), (d)
are for ultrahigh beta equilibrium. Contour plots
for magnetic flux function (a, c) and magnetic field
intensity (b, d) are shown together with cross sec-
tions of helical coils.

sure driven toroidal current (bootstrap current), even
though plasma thermal energy increased. Since the
MHD potential energy decreases according to the in-
crease of the heating power input to plasma, MHD
stable bootstrap transition to higher beta plasmas oc-
cur by ramp-up of heating power input.

By the comparison of the MHD potential energy,
it is suggested that peaked pressure profile equilibrium
make a bootstrap transition to the flat-top pressure
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Fig. 7 (a) Pressure, bootstrap current, flux function and
magnetic field intensity along X coordinate. (b)
Specific volume U and rotational transform ι/2π.
Pressure profile is superimposed in this graph.

profile equilibrium, and small value of the helical pitch
parameter is more favorable for the high beta plasma
sustainment.

Ultrahigh beta core plasmas discussed in the pa-
per have excellent features for the reactor system. As
shown in Fig. 6(a,c), there is no drastic changes in
diverter-leg of ultrahigh beta core plasma and vac-
uum magnetic field. Moreover, magnetic field in core
plasma region retain almost the 60% of the value
of the vacuum magnetic field, even for the case of
βax = 176% (see Fig.7(a)). This will be very much fa-
vorable for the alpha particle heating of core plasma.
In addition, small magnetic surface volume for the
vacuum magnetic field shown in Fig.6(a) may also be
favorable for reactor systems, because the relatively
small heating power unit become sufficient for the
fusion ignition. After the ignition, high level fusion
power output is expected because of large plasma vol-
ume of ultrahigh beta plasma.

In the present paper, we have analyzed a straight
helical system, because of the simplicity. In this case,
MHD equilibrium can be solved without any approx-
imation. For the axisymmetric toroidal case, equi-
librium of βax = ∞ solutions have been numerically
obtained[7], for the case of no toroidal magnetic field.

In toroidal helical systems chaotic field line region
appears in surroundings of the magnetic surface. In
this case, magnetic flux function is expressed by the
adiabatic invariant of lines of force[8].

The flux function for the magnetic field B and for

the plasma current J , are reduced to the following[8],

Ψ = r Aφ + p
� − Y AX +X AY

�
(27)

I =
2π
μ0

�
r Bφ + p

� − Y BX +X BY

��
(28)

where p and r are pitch number and usual radial co-
ordinate, respectively, and (X,Y, φ) is the toroidal ro-
tating helical coordinate system[9].

In magnetic surface region, adiabatic invariants�
Ψ

�
and

�
I
�
can be calculated.

�
Ψ

� ≡ 1
2π

�
Ψdφ =

�
Ψ
dφ
d�

�
, (29)

�
I
� ≡ 1

2π

�
Idφ =

�
I
dφ
d�

�
, (30)

where
� · · · � represents the average along the lines of

force. Numerical example of the adiabatic invariant�
Ψ

�
is shown in Fig.8.

Fig. 8 Numerical example of the adiabatic invariant
�
Ψ

�
for the vacuum magnetic field of the LHD.

These adiabatic invariants satisfy the following re-
lations,

0 = B · ∇ ��
Ψ

��
, (31)

0 = J · ∇ ��
I
��

. (32)

Then the MHD equation ∇P = J × B gives the fol-
lowing expression.

J =
I �(Ψ)
2π

B + P �(Ψ)

⎛
⎝

−p Y
pX

r

⎞
⎠

+(higher order corrections) (33)

Because the plasma current J is given as a func-
tion of the magnetic vector potential A, it seems that
the equilibrium calculation of the toroidal helical sys-
tem is possible by similar method written in §3.

The plasma volume is determined by the adia-
baticity of lines of force of peripheral region of mag-
netic surface. The adiabaticity is controllable by the
vertical field coils currents configuration. This physi-
cal situation is same for the vacuum or high beta mag-
netic configuration. In the LHD vacuum magnetic
field, magnetic surfaces accompanied with very thin
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chaotic field line layers are confirmed by appropriate
choices of the vertical field coils currents.

Numerical demonstration and validation of its re-
sults are future tasks.
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