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Effect of a toroidal rotation on the type-I edge localized mode in JT-60U is investigated numerically. As
the result of the numerical analysis, it is confirmed that the plasma rotating experimentally in the co-direction
to the plasma current is approximately on the stability boundary of the MHD mode even when the rotation
is neglected. However, the plasma rotating in the counter-direction is far from the stability boundary under the
static assumption. Since both plasmas have the type-I ELM, the edgeMHD stability is reassessed with the toroidal
rotation effect. This stability analysis clarifies that the rotation of this counter rotating plasma can destabilize the
edge localized MHD mode, and can resolve the discrepancy that the type-I ELM is observed in the plasma that is
MHD-stable under the static assumption.
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1. Introduction
In tokamak plasmas, a transport barrier sometimes ap-

pears near the plasma surface, and makes a pedestal struc-
ture in the plasma density and the temperature profiles.
The plasma with such pedestal structures, called H-mode,
is favorable to improve a energy confinement, which is
enough to reach burning plasma conditions. In such H-
mode plasmas, edge localized modes (ELMs) are usually
observed, and constrain the maximum pressure gradient in
the pedestal [1].

The recent experimental results in JT-60U show that
the plasma toroidal rotation at the pedestal has an impact
on the ELM phenomena [2, 3]. However, this dependence
of the ELM phenomena on the toroidal rotation is com-
plicated to understand only with the experimental results.
In fact, the toroidal rotation can change not only the ELM
phenomena but also the equilibrium pressure (density, tem-
perature) profile near the pedestal, and it is difficult to iden-
tify whether the transport property or the stability property
is responsible for this change of the pedestal profile. For
comprehending such a complicated dependence between
the ELM phenomena and the plasma rotation, it is nec-
essary to understand the physics with the theoretical and
numerical analyses.

Previous numerical and experimental works have re-
ported that the ideal MHD modes destabilized near the
plasma surface, called the peeling-ballooning mode, is
thought to be responsible for the type-I ELM [1, 4]. On
the basis of this result, we investigated the toroidal rotation
effect on the ideal MHD modes at tokamak edge pedestal,
and reported that the edge localized MHD mode can be
destabilized by the toroidal rotation with shear though the
ballooning mode stability changes little [5]; an other paper
also reported that the toroidal rotation shear increase the
growth rate of intermediate wave length MHD modes [6].
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In Ref. [7], furthermore, we have clarified that this desta-
bilization is mainly caused by the difference between the
frequency of the eigenmode and the toroidal rotation fre-
quency, and this effect becomes effective only when the
rotation profile has large shear in the radial direction.

Based on these results, in this paper, we investigate
numerically the effect of the toroidal rotation on the type-I
ELM in JT-60U. Fortunately, in the last campaign of JT-
60U, several diagnostics were installed so as to obtain high
spatial resolution profiles near the pedestal, and realize to
analyze the edge MHD stability with high accuracy.

This paper is organized as follows. Section 2 intro-
duces the profiles of the toroidally rotating equilibria re-
constructed with the experimental data of the JT-60U type-
I ELMy H-mode plasmas. Section 3 shows the numeri-
cal results of the stability analysis in not only the rotating
but also the static cases. By comparing the results in both
cases, we discuss the toroidal rotation effect on the type-
I ELM in JT-60U. Section 4 presents a summary of this
work.

2. Equilibrium profiles
The equilibria analyzed numerically are obtained

by the reconstruction with the experimental data of the
E49228 and the E49229 plasmas in JT-60U; the details
of these plasmas are shown in Ref. [8]. As discussed in
Ref. [8], these plasmas have the same toroidal magnetic
field Bt0 = 4.0[T] and plasma current Ip = 1.6[MA], but
the plasma rotation profiles are different between E49228
and E49229, whose toroidal rotation are in the co-(CO.)
and ctr-(CTR.)directions to the plasma current, respec-
tively. Such a difference of the rotation profiles are due
to changing the combination of the momentum input with
neutral beam injection (NBI). By changing the rotation
profile from CO. to CTR., the type-I ELM frequency in-
creases from ∼ 37[Hz] to ∼ 45[Hz], and the ELM energy
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Fig. 1 Waveforms of the E49228 (CO.) and the E49229 (CTR.)
plasmas, which are rotating in the co- and the ctr-
directions, respectively. The red line and the blue line
show the divertor Dα intensity and the diamagnetic stored
energy Wdia. The type-I ELM frequency is ∼ 37[Hz]
and ∼ 45[Hz], and the ELM energy loss is ∼ 89[kJ]
and ∼ 46[kJ] in the E49228 and E49229 plasmas, respec-
tively.

loss becomes about half from ∼ 89[kJ] to ∼ 46[kJ]; the
waveforms of these plasmas are shown in Fig.1.

Figure 2 shows the profiles of (a) the temperatures of
the ion Ti and the electron Te, (b) the electron number den-
sity ne and the pressure p, (c) the rotation frequency Ω,
and (d) the parallel current density � j · B�/�B2� and the
safety factor q, respectively; these are the profiles just be-
fore the ELM crash. Here ρvol. is the radial coordinate
defined as ρvol. ≡

�
V(ψ)/Vtot., V is the volume in each

flux surface, ψ is the poloidal flux normalized as ψ = 0
(= 1) at the axis (surface), Vtot. is the plasma total vol-
ume, j is the plasma current density, and B is the magnetic
field. The � j · B�/�B2� profile is obtained by estimating the
bootstrap current, the neutral beam driven current, and the
ohmic current with the ACCOME code [9]. The effective
charge Ze f f values and the poloidal beta βp values are (2.6,
0.85) and (2.8, 0.81) in the E49228 (CO.) and the E49229
(CTR.) plasmas, respectively. Hereafter, the E49228 and
the E49229 plasmas are called as the CO. and CTR. plas-
mas. The profiles of Ti and ne near the pedestal are mea-
sured with high spatial resolution by CXRS and LiBP [8].
Note that the Ti profiles outside the top of the Ti pedestal
(ρvol. > 0.93) are similar to each other but the ne profile of
the CTR. plasma is different from that of the CO. plasma;
the ne pedestal top and foot changes from ρvol. = 0.93 and
0.99 (CO.) to 0.91 and 0.96 (CTR.). Such a difference of
the ne pedestal profile changes the position where the pres-
sure gradient becomes maximum and the bootstrap current
profile as shown in Figs.2 (b) and (d).
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Fig. 2 Profiles of (a) Ti and Te, (b) ne and p, (c) Ω, (d)
� j · B�/�B2� and q, in the E49228 (CO.) and the E49229
(CTR.) plasmas, respectively.

3. Stability analysis
3.1 Stability analysis without a toroidal ro-

tation
In this subsection, we investigate and compare the

ideal MHD stability properties of the E49228 (CO.) and
the E49229 (CTR.) plasmas without a toroidal rotation
effect. This stability analysis is performed with the
MARG2D code [10, 11] for the finite-n MHD mode anal-
ysis and the BETA code [12] for the infinite-n ballooning
mode analysis, where n is the toroidal mode number. In
this paper, the range of n of the analyzed MHD modes is
from 1 to 30, and∞.

The main object of the edge MHD stability analysis is
to clarify the achievable pedestal pressure without instabil-
ity. As the pedestal pressure becomes larger, the edge boot-
strap current density also increases, and the edgeMHD sta-
bility property is mainly determined by these equilibrium
profiles. From this viewpoint, as mentioned in previous
works [4, 11], the edge pedestal pressure gradient and the
edge current density are the main parameters for the edge
MHD stability analysis. In this paper, for varying these pa-
rameters, the pressure profile and the current profile near
the pedestal are changed as

p0(ψ) ∝p0−org(ψ) ... (0 ≤ ψ < 2ψped − 1.0), (1)

p0(ψ) ∝p0−org(ψ) · (1.0 +Cped · Ψ)
... (2ψped − 1.0 ≤ ψ ≤ 1.0), (2)

Ψ ≡
⎛⎜⎜⎜⎜⎜⎝1.0 −

������
ψ − ψped

1.0 − ψped

������
2⎞⎟⎟⎟⎟⎟⎠
2

, (3)

and

� j · B�/�B2� ∝� j · B�/�B2�org

+CBS � j · B�/�B2�BS , (4)
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where p0 is the flux function part of the plasma pressure,
p0−org is the original p0 value of the reconstructed experi-
mental data shown in Fig.2 (b), ψped is the ψ value at the
top of the pressure pedestal, � j ·B�/�B2�org (� j ·B�/�B2�BS )
is the original (bootstrap) � j ·B�/�B2� value calculated with
the ACCOME code shown in Fig.2 (d), and Cped (CBS )
is the parameter for changing the pressure (current) pro-
file near the pedestal. Note that since we fix the poloidal
beta βp and the plasma current Ip, the profiles of p0 and
� j · B�/�B2� are no longer same as the original profiles ev-
erywhere when Cped,CBS � 0. Also note that the plasma
pressure is no longer the flux function in case that the
plasma is rotating [13], and when the rotation is purely
toroidal, the pressure can be written as

p = p0(ψ) exp
⎡⎢⎢⎢⎢⎣M2
⎛⎜⎜⎜⎜⎝R

2

R20
− 1
⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ , (5)

under the isothermal condition on each magnetic surface
(T = T (ψ)). Here M is the Mach number that is the ratio of
the toroidal rotation velocity vφ = R0Ω to the ion thermal
velocity vth =

√
2Ti/mi as

M2(ψ) ≡
�

vφ
vth

�2
=

miR20Ω
2

2Ti
, (6)

mi is the ion mass, R is the coordinate of the cylindrical
coordinate system (R, Z, φ), and R0 is the major radius of
the equilibrium.

Figure 3 shows the stability diagrams on the ( jped,
α94) and (s94, α94) planes, where jped is the current
density averaged over (2ψped − 1.0) ≤ ψ ≤ 1.0, α
is the normalized pressure gradient defined as α ≡
−(μ0/2π2)(dp0/dψ)(dV/dψ)(VR/2π)0.5, μ0 is the perme-
ability in the vacuum, s is the magnetic shear defined as
s ≡ 2V/q(dq/dV), and the subscript 94 expresses the value
at ψ = 0.94. Figures 3 (a) and (c) indicate that the CO.
plasma is approximately on the stability boundary of the
edge localized MHD mode without a toroidal rotation ef-
fect. In fact, the n = 12 peeling-ballooning mode becomes
marginally unstable by increasing Cped to 0.1; this incre-
ment is thought to be within the error of the edge profile
measurements.

On the other hand, as shown in Figs.3 (b) and (d), the
CTR. plasma is far from the stability boundary without a
toroidal rotation, and to make the plasma unstable, it is
necessary to increase Cped > 0.25. Since such a large in-
crement in pressure is no longer within the margin of the
error, this CTR. plasma without a toroidal rotation is stable
against ideal MHD modes.

3.2 Stability analysis with a toroidal rotation
As mentioned in the previous subsection, the CTR.

plasma without a toroidal rotation is stable against ideal
MHD modes. However, as already mentioned, the type-
I ELM was observed experimentally in this plasma. To
understand this discrepancy, in this subsection, we investi-
gate the toroidal rotation effect on the edge MHD stability
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Fig. 3 Stability diagrams without the toroidal rotation effect on
the ( jped, α94) plane of (a) the E49228 (CO.) and (b)
the E49229 (CTR.) plasmas, and those on the (s94, α94)
plane of (c) the CO. and (d) the CTR. plasmas, respec-
tively. The (green) circle and (red) triangle mean stable
and unstable for the finite-n MHD modes, the solid line
shows the stability boundary determined by the finite-n
MHD modes and the infinite-n ballooning mode, and the
target expresses the equilibrium values observed experi-
mentally. As shown in these figures, the CO. plasma is
approximately on the stability boundary of the edge lo-
calized MHD mode, but the CTR. plasma is far from this
stability boundary.

in these plasmas. The numerical analysis including a ro-
tation effect is performed with the MINERVA code [14],
which solves the Frieman-Rotenberg equation [15], the
linear ideal MHD equation with flow. As mentioned in
the previous subsection, since the CO. plasma becomes
marginally unstable by increasing Cped to 0.1, we inves-
tigate the toroidal rotation effect on the edge MHD stabil-
ity under the condition Cped = 0.1 in both CO. and CTR.
plasmas. Note that MARG2D solves the eigenvalue prob-
lem associated with the two-dimensional Newcomb equa-
tion [10]

NY = −λ0RY, (7)

and realizes to calculate the eigenvalue numerically even
when the plasma is stable (λ0 > 0), where N is the New-
comb operator, Y ≡ rξ, r is the radial coordinate, ξ is the
plasma displacement, λ0 is the eigenvalue, and R is the
weight function defined in Ref. [10]. This advantage real-
izes to identify the stability boundary of the MHD mode as
the contour of λ0 = 0 in the static equilibrium case.

However, since the MINERVA code solves the initial
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Fig. 4 Dependences of −λ0 and γ/ωA0 on n in the CO. plasma
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The toroidal rotation has little impact on this CO. plasma,
and the n = 12 mode is marginally unstable.

value problem of the Frieman-Rotenberg equation,

ρ
∂2ξ

∂t2
+ 2ρ(u · ∇)∂ξ

∂t
+ ρ(u · ∇)(u · ∇)ξ

= F(ξ) = Fs(ξ) + Fd(ξ), (8)

Fs ≡ ∇ �ξ · ∇p + Γp∇ · ξ�

+(∇ × Q) × B + j × Q, (9)

Fd ≡ ∇ · �ρξ(u · ∇)u − ρu(u · ∇)ξ�

+ρ(u · ∇)(u · ∇)ξ, (10)

this code cannot identify strictly the marginal condition
(γ/ωA0 = 0). Here ρ is the plasma mass density, u is the
equilibrium rotation velocity, F is the force operator, Fs

is the force operator that has the same vector form as that
in static equilibrium case, Fd is the sum of the remaining
force terms that express the rotation effect on the force op-
erator F, Q is the fluctuation of the magnetic field given
by

Q ≡ ∇ × (ξ × B) , (11)

and ωA0 is the toroidal Alfvén frequency at the axis. Ac-
cordingly, the stability boundary is determined by extrapo-
lating γ into 0 from computable (positive) γ values in case
that the equilibrium rotates. Note that one of γ/ωA0 used
for extrapolating is enough small (∼ 5.0× 10−3) to identify
the stability boundary with high accuracy. In this paper,
since we assume that the plasma rotation is purely in the
toroidal direction, u can be written as u = R2Ω∇φ.

Figure 4 shows the n dependences of −λ0 and γ/ωA0

in the CO. plasmas with and without the toroidal rotation
whose profile is shown in Fig.2 (c). As shown in this fig-
ure, the rotation profile of the CO. plasma has little im-
pact on the edge MHD stability, and the n = 12 mode is
marginally unstable as in the static case.

Next, we investigate the rotation effect on the edge
MHD stability in the CTR. plasma. In this analysis, we
investigate not only the n dependence but also the rotation
dependence of γ/ωA0 by changing the rotation profile from
rot.1 (original profile shown in Fig.2 (c)) to rot.2 and rot.3
shown in Fig.5 (a). These rot.2 and rot.3 profiles are de-
termined by increasing the Ω value at ρvol. = 0.92 as 1.1
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Fig. 5 (a) Enlarged view of Ω of the CTR. plasma. To investi-
gate the rotation effect on the MHD stability in the CTR.
plasma, three kinds of the rotation profile (rot.1, rot.2,
rot.3) are used for the stability analysis. (b) Dependences
of −λ0 and γ/ωA0 on n in the CTR. plasma, whose ro-
tation profile is Ω = 0, rot.1, rot.2, and rot.3, respec-
tively. The toroidal rotation of CTR. plasma (rot.1) desta-
bilizes the MHD mode, and the n = 20 mode becomes
marginally unstable.

and 1.2 times larger than rot.1, respectively. Figure 5 (b)
shows the n dependence of −λ0 and γ/ωA0 in the CTR.
plasma. As shown in this figure, though the CTR. plasma
without rotation is stable against ideal MHD modes, the
toroidal rotation of CTR. plasma (rot.1) destabilizes the
MHD mode, and the n = 20 mode becomes marginally
unstable. Moreover, by increasing the rotation frequency,
not only the growth rate but also the n number of the most
unstable mode become larger; for example, when the rota-
tion profile is rot.3, the n = 26 mode is the most unstable
mode, whose γ/ωA0 approaches to 0.02.

Based on these numerical results, we investigate the
stability boundary of both the CTR. plasmas with the
toroidal rotation shown in Fig.2 (c). Figure 6 shows the
stability diagram on the ( jped, α94) and the (s94, α94) planes
in the CTR. plasma with and without the toroidal rotation.
As shown in these figures, by adding the toroidal rota-
tion, the stability boundary moves to the smaller α94 side,
and as the result, the threshold pressure gradient becomes
smaller from α94−max � 2.77 to � 2.28 under the same
� j · B�/�B2� � 0.5 condition. Moreover, the n number of
the MHD modes, which determines the stability bound-
ary, becomes larger as the rotation frequency increases,
and the destabilizing effect of the toroidal rotation becomes
stronger as the n number of the MHD mode increases. For
example, on the stability boundary at � j · B�/�B2� � 0.5,
the n number of the MHD mode changes from 16 to 20
by adding the toroidal rotation. This result is consistent
with the results of the qualitative and quantitative analyses
of the rotation and the rotation shear effects on the edge
MHD stability in Refs. [5, 7, 14], and resolves the discrep-
ancy mentioned at the front of this subsection.

4. Summary
We analyze numerically the toroidal rotation effect on

the type-I ELM property by comparing the stability prop-
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circle and (orange) triangle means stable and unstable for
the finite-n MHD modes, the solid line shows the stabil-
ity boundary of the finite-n MHD modes and the infinite-
n ballooning mode in the CTR. plasma with the rotation
profile rot.1., the broken line shows the stability bound-
ary of the finite-n MHD modes in the CTR. plasma with-
out the rotation., and the target expresses the equilibrium
values observed experimentally. By adding the toroidal
rotation, the stability boundary moves to the smaller α94
side, and as the result, the threshold pressure gradient be-
comes smaller from α94−max � 2.77 to � 2.28 under the
same � j · B�/�B2� � 0.5 condition.

erties between the E49228 and the E49229 type-I ELMy
H-mode plasmas in JT-60U, which are rotating in the
co- and ctr- directions to the plasma current, respectively.
As the result of the stability analysis, we clarify that the
toroidal rotation has little impact on the MHD stability in
the E49228 co-rotating plasma, and this plasma just before
the ELM is approximately on the stability boundary of the
edge localized MHD mode in each static and rotating case.
On the other hand, the E49229 ctr-rotating plasma is far
from the stability boundary under the static assumption. In
this ctr-rotating plasma, the toroidal rotation destabilizes
the edge MHD mode, and reduces the stability limit of the
pressure gradient near the pedestal. As the result of this
destabilization, this ctr-rotating plasma just before ELM
is also considered as the marginally unstable against edge
MHD mode.

As mentioned in the introduction, we have reported
that the destabilization of edge localized MHD mode by
the toroidal rotation with shear is mainly caused by the
difference between the frequency of the eigenmode and the
toroidal rotation frequency; this mechanism is identified by
defining the energy in Ref. [7] as

δWrot.−n2 ≡ n2�ξ
���ρ(ω2 −Ω2)

��� ξ�. (12)

This energy is proportional to n2, and increases as the ro-
tation shear becomes larger. By comparing the rotation
profiles between the E49228 and the E49229 plasmas, the
rotation shear near the pedestal in the E49229 plasma is lo-
cally more than twice that in the E49228 one. Moreover, as
mentioned in Subsec.3.2, the n number of the marginally
unstable mode is 20 in the E49229 plasma, which is larger
than that in the E49228 plasma (= 12). These results im-

ply that the destabilizing effect by the toroidal rotation with
shear is more effective in the E49229 plasma than that in
the E49228 plasma. Actually, at the marginally unsta-
ble point near the operation point on the ( jped, α94) dia-
gram, the δWrot.−n2/δWK value at ( jped, α94) = (0.50, 2.28)
is −4.95 × 10−4 in the E49229 plasma, and this is about
twice as large as that (= −2.52 × 10−4) at ( jped, α94) =
(0.55, 2.75) in the E49228 plasma, where δWK ≡ �ξ |ρ| ξ�
is the kinetic energy. The more detailed discussion about
the destabilizing mechanism is reported in Ref. [7].

In this paper, since the measurements with high spatial
resolution is necessary for the edge MHD stability anal-
ysis of the experimental results, and the physics of the
type-I ELM is relatively well-understood qualitatively and
quantitatively, we select the E49228 and the E49229 type-
I ELMy H-mode plasmas as the objects of the numerical
analysis. To understand the toroidal rotation effect on the
ELM phenomena in more detail, it is important to under-
stand this effect on not only the type-I ELM but also the
other ELMs. Particularly, as discussed in Ref. [2], the
grassy ELM strongly depends on the toroidal rotation fre-
quency, and since the ELM energy loss of the grassy ELM
is much smaller than that of the type-I ELM, this grassy
ELM is thought to be more favorable than the type-I ELM
for ITER and future devices. From this viewpoint, we will
investigate the toroidal rotation effect on the grassy ELM
and will report in near future.
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