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The conjugate variable method is discussed for the eigenvalue or boundary-value problems of the
ordinary differential equations that appear in the magnetohydrodynamic stability analysis. The method
is used to the reduced MHD equations to derive a canonical 1-form of them. The 1-form thus obtained
provides the initial step for the application of the Hamilton-Lie perturbation theory.
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1. Introduction

The conjugate variable method is well-known
in the path-integral formalism of classical statistical
dynamics[1]. The method endows a system of ordinary
differential equations with the Hamiltonian structure
by doubling the unknown variables. Recently, the au-
thor studied the conjugate variable method to demon-
strate that it can be effectively used to apply the
canonical Hamilton-Lie perturbation theory to a sys-
tem that does not have the Hamiltonian structure[2].

The Hamilton-Lie perturbation method has been
mainly used in the problems of classical dynamics
(initial-value problems for ordinary differential equa-
tions), and has not been applied to the problems such
as eigenvalue problems in MHD (MagnetoHydroDy-
namic) stability theory. One reason will be the non-
Hamiltonian structure of the MHD problems. The
present paper applies the conjugate variable method
to the reduced MHD equations and derive the canon-
ical 1-form of them. It provides the first step for fur-
ther investigation of the reduced MHD equations from
a view point of the Hamilton-Lie perturbation theory.
In Section 2, the conjugate variable method is illus-
trated by applying it to a model equation in the MHD
stability analysis. In Section 3, the canonical 1-form
of the reduced MHD equations is derived by using the
conjugate variable method, and summary is given in
Sec.4.

2. Eigenvalue Problem
in MHD Stability Analysis

Let us consider

d

da (f <$7*>d—y) + gz, My(@) =0,

e (1)

where f(z,A) > 0 is implied in the domain = € [a, b].
Instead of initial-value problems, we are interested in
boundary-value or eigenvalue problems for Eq.(1), and
therefore we want to determine the parameter A\ so
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that the solution y(z) satisfies the imposed bound-
ary condition. An example in the MHD theory is the
model equation of ballooning modes[3], where z is the
so called extended poloidal angle of —oc0 < x < o0.
Note that Eq.(1) has the Lagrangian

b
L= l/ {f(m,A)(—Z)Q —g(z, Ny? | dz,  (2)

and therefore, it is easy to construct a 1-form that
generates Eq.(1). One is the canonical 1-form given
by

v = pdy — h(y,p, z)dz, (3)
where the Hamiltonian is

p2 g(xa)‘) 2
SN T2 U )

Another is the non-canonical 1-form[4] given by

Y= f(.’IJ, )‘)U’dy - H(y,u,m)dm,

h(y,p,x)

()
where

f('Q; )‘) uz g(.1'2, )‘) yz. (6)
It is easy to identify each of the Hamilton equations
generated from Eqs.(3) and (5) as Eq.(1). Equation
(4) can be interpreted as the Hamiltonian of a har-
monic oscillator whose mass and spring constant vary
with the time x. We will not meet any difficulty of
applying the Hamilton-Lie perturbation method to
Eq.(1) since we have the corresponding 1-form, Eq.(3)
or Eq.(5).

However, 1-forms such as Eqgs.(3) and (5) assume
the existence of Lagrangian, which is a too strong
limitation to apply more general problems. The as-
sumption of Lagrangian becomes unnecessary when
the conjugate variable method is used to differential

H(y,u,z) =

equations. Let us consider the mormal form of the
differential equation (1)
dy p
hat A 7
dr  f(z,\)’ @
dp
- =— Ay. 8
ay g9(z, Ny (8)
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Next, by introducing the conjugate variables a (re-
spectively () for y (respectively p), we can make the
canonical 1-form

v = ady + Bdp — Hdx, 9)

and
= f(jf’” — g(x, \)By. (10)

Also, by transforming the variables

a= f(z,\)A, =B, (11)
we obtain

v = f(z,\)Ady + Bdp — Hdz, (12)
and

H = Ap — g(x, \) By. (13)

Equation (12) is the non-canonical 1-form with conju-
gate variables.

Here let us note that the conjugate variable
method can be easily applied to non-linear differential
equations as long as they are expressed in a normal
form.

3. Example in the Reduced MHD equa-

tions
Next, let us consider, as an example that does

not have a Lagrangian, the low beta reduced MHD
model for a cylindrical plasma[3]. In this model, the
magnetic field B and the velocity of a plasma v are
expressed as

B =e, x V(—i)Y(x,t) + B.e., (14)

and

v=e, X Vo(x,t), (15)

where the axial magnetic field, B,, is constant in time
and uniform in space.

Let 1o (r) be the poloidal flux function in an equi-
librium state. Then the safety factor ¢(r) is given by

r B,

Q(r):R_odillJo/dT’

(16)

with using the cylindrical coordinate system (r, 6, z);
2w Ry is the length of a plasma column. Also, the
current density in the axial direction is given by

_1d ([ dbo

~rdr dr )’
Assuming that ¢, ¢ o< exp(At+imb—ikz), the reduced
MHD model yields linearized equations for ¢ and ¢ as

J=(r) (17)

dj, m
dr r ¥,

AL L= K (r)(Ary) — (18)
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and

M = —K)(r)¢g +nA 1y

Here n > 0 is the plasma resistivity. The operator A
is defined by

(19)

_ld [ dy my2
A= (d_> -(F) (20)
and the parallel wave number K)|(r) by
B. m
Kiyir)y==—(——-n], n=EkRy. 21
1) =% <q(r) ) 0 (21)

When n = 0, Eqgs.(18) and (19) reduce to the ideal
MHD equation with respect to ¢, and its Lagrangian is
well-known. When 7 # 0, such a Lagrangian does not
exit, then the conjugate variable method will prove
to be useful in constructing 1-form. To this end, we
rewrite Eqgs.(18) and (19) into a normal form. We first
introduce the generalized momenta, ® and ¥, by

d¢ dy

—, U =r—.
"ar "ar
Then Eqs.(18) and (19) become first order differential
equations for ® and ¥, which are given by

d = (22)

d® , 1 m?
i K2 — 4+
dr [T I nA + r ] ¢
K dj
Ky mdj.
+ [r ; 3 dr} ), (23)
and
dv K A 2
ol [—r+ m—] . (24)
dr n n r

Now it is easy to construct the 1-form for the reduced
MHD equations, Egs.(18) and (19). Introducing con-
jugate variables P,Q, X and Y for ¢,1,® and ¥, re-
spectively, the 1-form is expressed as

v = Pdp + Qdip + Xd® + Yd¥ — hdr, (25)
and the Hamiltonian h is given by
1
h = ;(P(I) +Q9)
+  hi7¢X + harp X
+  hi1gdY + hagoY, (26)
where
1 m?
hir = rKj—+ — 27
17 T Y + o (27)
Ky mdj:
h = r— - —== 28
27 r n A\ drv ( )
K
h = ’r—’ (29)
18 7
and
A m?
hgg =—-r+—. (30)
n r
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4. Summary

The canonical 1-form of the reduced MHD equa-
tions has been derived by the conjugate variable
method. This method is effective for wide prob-
lems in MHD stability analysis such as finite beta
plasma in tokamaks as long as the MHD equations
are expressed as ordinary differential equations on the
poloidal Fourier harmonics of the mode.

If once we make the 1-form for an eigenvalue prob-
lems, we can apply the Hamilton-Lie perturbation
analysis of the problem. Further investigation will be
reported in the near future.
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