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A new multi-scale numerical scheme for the nonlinear MHD analysis of heliotron plasmas has been
developed as an extension of the original scheme [K.Ichiguchi and B.A.Carreras, Plasma Fus. Res. 3
(2008) S1033]. The time evolution of the dynamics can be studied with this scheme as beta increases.
This scheme is based on the iteration of a dynamics calculation utilizing the reduced MHD (RMHD)
equations and a calculation of a three-dimensional static equilibrium. The effects of the diffusion of
the background pressure and the continuous heating are incorporated in the average pressure equation,
which plays a role of a transport equation. This scheme is applied to the inward-shifted Large Helical
Device (LHD) plasma to see how the effects influence the self-organization of the plasma.
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1. Introduction
To understand consistently the MHD dynamics

of the magnetically confined plasma in the increase of
beta, it is necessary to examine a continuous evolution
of the plasma. In this case, we have to treat the time
evolution of the perturbation and the equilibrium si-
multaneously. However, the perturbation evolves in
a short time scale and the equilibrium changes in a
long time scale. The difference of the time scale be-
tween them is ∼ 105 in general. In the previous work,
we developed a numerical scheme to treat this multi-
scale problem[1, 2]. The scheme is based on the itera-
tion of the nonlinear evolution of the perturbation dy-
namics and the update of the static equilibrium. The
NORM code[3, 4] is utilized for the dynamics calcu-
lations which is based on the RMHD equations, and
the VMEC code[5] is used for the equilibrium update
which is a three-dimensional equilibrium solver. We
applied the scheme to the LHD plasma in the Mercier
unstable configuration. It was observed that self-
organization of the resistive interchange mode brings
local improvement of the Mercier stability[2].

It is a key issue how to treat the time evolution
of the background pressure in the multi-scale calcula-
tion. In the original scheme[2], we increase the beta by
adding a small pressure increment to the average pres-
sure in the equilibrium calculation with the VMEC
code. The nonlinear dynamics is calculated with the
fixed equilibrium pressure for a short time section.
Since the whole time evolution is obtained as a series
of the sections, the beta value is increased stepwise
inherently. Besides, the diffusion of the background
pressure is not taken into account. The background
diffusion can affect the local stabilization of the in-
terchange mode through the change of the pressure
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gradient.
In the present study, we incorporate the effects of

the continuous heating and the background pressure
diffusion in the multi-scale scheme. For this purpose,
we decompose the pressure into the average and the
oscillating parts and apply them to the RMHD equa-
tion. Since we can regard the average part as the
background pressure, we can treat the equation for
the average pressure as an equation for the dynamics
of the background pressure. The parallel and perpen-
dicular diffusion terms in the equation automatically
correspond to the classical diffusion of the background
pressure. By adding the heat source term to the equa-
tion, we can incorporate the continuous heating effect.
There also exists a convection term in the equation.
This term indicates anomalous diffusion due to the
MHD turbulence. Hence, the equation for the aver-
age pressure is regarded as a transport equation for
the background pressure, which consists of the clas-
sical diffusion, the anomalous diffusion and the heat
source. Thus, by utilizing this equation, we can ana-
lyze the nonlinear evolution incorporating the effects
of the continuous heating and the background diffu-
sion.

We apply this scheme to the nonlinear evolution
of the LHD plasma. We observe how the effects of the
continuous heating and the background diffusion work
on the self-organization of the plasma pressure.

2. Pressure Transport Equation
The present multi-scale scheme is also based on

the iteration of the calculations of the nonlinear dy-
namics and the update of the static equilibrium.
The nonlinear dynamics is calculated based on the
RMHD equations for stellarators including higher or-
der toroidal corrections[6, 7]. The RMHD equations
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are the three-field equations for the poloidal flux Ψ,
the stream function Φ and the plasma pressure P . In
the present scheme, we decompose P differently from
Ψ and Φ. The variables of Ψ and Φ are decomposed
into the equilibrium and the perturbed parts as

Ψ(ρ, θ, ζ; t) = Ψeq(ρ) + Ψ̃(ρ, θ, ζ; t) (1)

Φ(ρ, θ, ζ; t) = Φ̃(ρ, θ, ζ; t). (2)

On the other hand, P is decomposed into the average
and the oscillating parts as

P (ρ, θ, ζ; t) = �P �(ρ; t) + �P (ρ, θ, ζ; t). (3)

Here we employ the flux coordinates (ρ, θ, ζ), where
ρ denotes the square root of the normalized toroidal
magnetic flux, and θ and ζ are the poloidal and the
toroidal angles, respectively. The subscript ‘eq’ and
the tilde indicate the equilibrium and the perturbed
quantities, respectively, in Eqs.(1) and (2). The an-
gle bracket and the hat indicate the average and the
oscillating parts, respectively, in Eq.(3).

By substituting these decompositions into the
normalized RMHD equations, we obtain

∂Ψ̃
∂t

= −∇�Φ̃ +
1
S

J̃ζ , (4)

∂Ũ

∂t
= −[Ũ , Φ̃]−∇�J̃ζ − [Ψ̃, Jζeq]

+
1
2�2

[Ωeq, �P ] + ν

�
R

R0

�2

∇2
⊥Ũ , (5)

∂�P �
∂t

= −�[ �P , Φ̃]�
+κ⊥0�Δ∗�P ��+ κ�0�∇†2

� �P ��+Q, (6)

∂ �P
∂t

= − �[P, Φ̃] + κ⊥ �Δ∗P + κ�
�∇†2
� P. (7)

Here [y, z] denotes the Poisson bracket which is defined
as

[y, z] =
g

ρ

�
∂y

∂ρ

∂z

∂θ
− ∂y

∂θ

∂z

∂ρ

�
. (8)

The diffusion operators Δ∗ and ∇†2
� are also defined

as

Δ∗f =
�

R

R0

�2

∇⊥ ·
�

R0

R

�2

∇⊥f (9)

and

∇†2
� f = ∇�

��
R0

R

�2

∇�f

�
, (10)

respectively, where R/R0 denotes the normalized ma-
jor radius. The perpendicular and the parallel differ-
ential operators are given by

∇⊥f = ∇f −∇ζ
∂f

∂ζ
(11)

and

∇�f = g
∂f

∂ζ
+ [Ψ, f ], (12)

respectively, where g is a factor corresponding to the
diamagnetic effect. The variables of U and Jζ are
the vorticity and the toroidal current density which
are given by U = (R/R0)2∇2

⊥Φ and Jζ = Δ∗Ψ, re-
spectively. These variables are decomposed as in the
cases for Φ and Ψ. The equilibrium quantity ∇Ωeq

gives average field line curvature. The factors �, S,
ν, κ⊥ and κ� are the plasma aspect ratio, the mag-
netic Reynolds number, the viscosity coefficient, the
perpendicular heat conductivity and the parallel heat
conductivity, respectively. The heat source term Q is
added in Eq.(6).

In this formulation, we treat �P � as the back-
ground equilibrium pressure. Hence, Eq.(6) can be
regarded as a transport equation for the background
pressure. The equation consists of the convection
term, the perpendicular and the parallel diffusion
terms and the heat source term. These terms have
the effects of the anomalous diffusion due to the non-
linear turbulence, the classical heat conductivity and
the continuous heating for the background pressure,
respectively. By using the equation, we can follow
the dynamics of the background pressure incorporat-
ing the continuous heating and the background diffu-
sion.

The equations (4)-(7) are solved by utilizing the
NORM code. Details of the NORM code are explained
in Ref.[3].

3. Multi-Scale Numerical Scheme
In the present scheme, we consider a short time

interval as a calculation unit. The whole time evo-
lution is obtained as a series of the results of the in-
tervals. The numerical procedure for an interval of
ti ≤ t ≤ ti+1 is explained here.

Since the NORM calculation of the previous in-
terval finishes at t = ti, we have the average pressure
�P �i at this time. The subscript ‘i’ means the value at
t = ti. Here we use �P �i as the equilibrium pressure
at t = ti,

Peq,i = �P �i. (13)

Then, we calculate the equilibrium quantities Eeq,i for
Peq,i by using the VMEC code. We also calculate the
equilibrium quantities EG

eq,i+1 at t = ti+1 for PG
eq,i+1

which is given by

PG
eq,i+1 = Peq,i +ΔP (ρ). (14)

Here ΔP denotes the increment of the pressure that
increases beta. Then, we interpolate the equilibrium
quantities to obtain the values at every time step of
the dynamics calculation with the NORM code. If the
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Fig. 1 Time evolution of kinetic energy.

number of the time step is L for ti ≤ t ≤ ti+1, we can
obtain the interpolated equilibrium quantities at j-th
step as

EG
eq,ij = Eeq,i +

j

L
(EG

eq,i+1 − Eeq,i) (15)

except JG
ζeq,ij . The value of JG

ζeq,ij is determined so
that the equilibrium equation

−[ΨG
eq,ij , J

G
ζeq,ij ] + [Ω

G
eq,ij , �P �ij ] = 0 (16)

is satisfied. The heat source term in Eq.(6) is deter-
mined so as to be consistent with the pressure incre-
ment as

Q =
ΔP

LΔt
, (17)

where Δt denotes the time step in the NORM calcula-
tion. Thus, the dynamics for the interval is calculated
with the equilibrium quantities of EG

eq,ij by using the
NORM code. We obtain �P �i+1 at the end of the in-
terval, which is used for the calculation of the next
interval.

In this procedure, the continuity of the equilib-
rium pressure is not guaranteed because �P �i+1 does
not necessarily equal to PG

eq,i+1. To reduce the differ-
ence and keep the continuity we employ a corrector
calculation. Once we finish the NORM calculation at
t = ti+1, we set

PG2
eq,i+1 = �P �i+1. (18)

Then, we calculate the equilibrium quantities and fol-
low the nonlinear dynamics again using PG2

eq,i+1 instead
of PG

eq,i+1.

4. Application to LHD Plasma
We apply the scheme to the LHD plasma in the

configuration with the vacuum magnetic axis located
at Rax = 3.6m. We assume the dissipation parameters
of S = 106, ν = 1.5 × 10−4, κ⊥ = κ⊥0 = 1.5 × 10−6

and κ� = κ�0 = 1.5 × 10−2. We examine the time
evolution for 0.210% ≤ �β� ≤ 0.443%. The length of
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Fig. 2 Time evolution of beta values.
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Fig. 3 Profiles of average pressure at t = 10, 000τA,
30, 000τA, 50, 000τA, 60, 000τA and 80, 000τA. Pro-
file of rotational transform at t = 80, 000τA is also
plotted.

one time interval is 2500τA, where τA is Alfvén time.
We increase the beta value by Δ�β� = 0.00832% every
time interval. In the equilibrium calculation with the
VMEC code, we use the free boundary condition and
the no net-current condition.

To obtain the initial state, we start from the equi-
librium for

Peq = P0(1 − ρ2)(1− ρ8) (19)

at �β� = 0.210%. The core region of ρ ≤ 0.53 of this
equilibrium is Mercier unstable. Therefore, the inter-
change mode linearly grows. We follow the nonlinear
evolution of the mode for this equilibrium using the
present scheme with ΔP = 0 and obtain a saturation
at t = 10, 000τA. In this case, the (m,n) = (5, 2) mode
dominantly grows and saturates. We employ the sat-
urated state as the initial state of the beta-increasing
calculation and set t = 10, 000τA as the initial time.

Figure 1 shows the time evolution of the kinetic
energy. In the VMEC calculation, we use the same
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profile of the equilibrium pressure for the pressure in-
crement ΔP . In this case, the beta value increases as
shown in Fig.2. In this scheme, as explained in Sec.3,
the continuity of the equilibrium quantities is not nec-
essarily guaranteed when the equilibrium is updated
by using the VMEC code. Nevertheless, not only the
total energy but also each component vary smoothly
as the beta increases. This result indicates that the
scheme treats the continuous evolution of the whole
system very well.

As in the case of the initial state calculation, the
(5, 2) interchange mode is dominant for t <∼ 20, 000τA.
This mode generates a local flat region in the average
pressure profile in the vicinity of the resonant surface
with́ ι = 2/5 as shown in Fig.3. A pentagon-like struc-
ture is formed in the total pressure profile as shown
in Fig.4(a). Since the local flattening of the pressure
profile steepens the gradient of the both sides of the
flat region. Therefore, the (4, 2) mode is excited at the
surface with´ι = 1/2 at t � 25, 000τA, and the (2, 1)
mode becomes dominant t � 40, 000τA. These modes
generate another local flat structure in the average
pressure profile for 30, 000τA

<∼ t <∼ 50, 000τA.
For t >∼ 50, 000τA the total kinetic energy is al-

most constant and small tips frequently appear. The
tips are attributed to the excitation of the (5, 2) mode.
In this region, the (2, 1) mode is continuously domi-
nant, however, the kinetic energy of the mode varies
weakly. The enhancement time of the (2, 1) mode does
not always coincide with the excitation time of the
(5, 2) mode. This time difference is due to the fact that
the (5, 2) and (2, 1) modes interact each other through
the deformation of the average pressure profile. The
excitation of (2, 1) mode enhances the pressure gradi-
ent at the region with´ι = 2/5. Then, the (5, 2) mode
is excited. On the other hand, the excitation of (5, 2)
mode enhances of the pressure gradient at the region
with́ ι = 1/2, which leads to the excitation of the (2, 1)
mode.

Since the local flat structure is already generated
at both´ι = 2/5 and´ι = 1/2 before the interaction,
the amplitude of the modes does not reach a high
level. On the other hand, both effects of the con-
tinuous heating and the background diffusion contin-
uously enhances the gradient of the average pressure.
Therefore, the effects always give a driving force to
the modes, particularly in their saturation phase. As
a result, small scale excitation and saturation are re-
peated frequently.

As shown in Fig.3, the �P � profile shows a global
gradient in the core region for t ≥ 60, 000τA, which is
different from the initial gradient. On the other hand,
the amplitude of the oscillating parts of the pressure
is reduced at t = 80, 000τA compared with that at
t = 30, 000τA as shown in Fig.4(b) and (c). These

(a)

(b)

(c)

Fig. 4 Bird’s eye view of total pressure profile at (a) t =
10, 000τA, (b) t = 30, 000τA and (c) t = 80, 000τA.

tendencies indicate that the average pressure is self-
organized so as to approach a marginally stable state
through the repetition of the mode excitation and sat-
uration.

5. Concluding Remarks
In order to analyze the nonlinear MHD dynam-

ics in the beta increase phase, we have developed a
multi-scale MHD simulation scheme incorporating a
pressure transport equation by extending the original
multi-scale scheme. In the present scheme, the equa-
tion for the average pressure in the RMHD equation
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expresses the dynamics of the background pressure.
The terms of the heat source and the background pres-
sure diffusion are included in this equation. Therefore,
this equation plays a role of a transport equation.

The scheme is applied to the low-beta inward-
shifted LHD plasma. Self-organization of the pres-
sure profile is obtained as a result of the frequent in-
teraction of the weak interchange modes resonant at
the different regions. The continuous heating and the
background diffusion are crucial for the frequent weak
activity. In the self-organization, the reconstruction
of a global pressure gradient and the reduction of the
mode amplitude are seen as beta increases. This ten-
dency indicates a stable path to a high beta regime,
which has been achieved in the experiments[8].

The self-organized profile of the average pressure
is similar to that obtained with the original scheme[2].
However, the precise structure is different. In the orig-
inal scheme, the beta value is increased stepwise and
the nonlinear dynamics is calculated for fixed equilib-
ria in short time sections. In this case, there exists
a longer time for the modes to saturate than in the
present scheme. Therefore, the self-organized pres-
sure profile tends to have a uniform structure in the
poloidal direction. On the other hand, in the present
scheme, the effects of the continuous heating and the
background diffusion continuously enhances the pres-
sure gradient. The interchange mode is easily excited
even in the local flat region of the average pressure
profile. Then the modes in the different regions can
be excited alternately through the local deformation
of the average pressure profile. Thus, as shown in
Fig.4(c), a poloidal structure corresponding to the
resonant mode tends to remain in the pressure pro-
file when the plasma is close to the marginally stable
state.
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