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Trapped Particles in the Reversed Field Pinch 

Marco GOBBIN, Luca GUAZZOTTO, Shi Chong GUO, Italo PREDEBON, Fabio SATTIN, 

Gianluca SPIZZO, Paolo ZANCA and Susanna CAPPELLO 

Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova, Italy 

 

The presence and role of trapped particles in the Reversed Field Pinch (RFP) configuration is considered, with 

an estimate of their relative population and a description of the characteristic trajectories, in particular for the 

RFX-mod [1] geometry. The particle’s orbit scale lengths (e.g. banana width, mean free path) are classified both for 

ions and electrons, also in the presence of a background chaotic magnetic field and/or a strong helical modulation 

of the toroidal equilibrium. The study combines analytical estimates and numerical results obtained with the 

Hamiltonian guiding center code ORBIT [2] and the equilibrium code FLOW [3]. The impact on particle transport, 

the origin and the magnitude of the bootstrap current and the amount of the neoclassical correction to the resistivity 

are investigated, both in axisymmetric and helical geometry. 
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1. Introduction 

Particle trapping occurs in magnetic confinement 

devices due to magnetic field non-uniformities, as a 

consequence of magnetic moment conservation. Trapped 

particles are known to have noticeable effects in Tokamaks, 

e.g. for the development of neoclassical transport and the 

presence of bootstrap current [4]. 

In Reversed Field Pinches (RFPs) this issue has been 

relatively less considered. Investigations from MST team 

[5] pointed out that, although the fraction of trapped 

particles is pretty much the same in RFPs and Tokamaks, 

their contribution to transport is much reduced in the 

former class of devices. Conversely, numerical simulations 

of a reactor-grade RFP by Shiina [6] revealed that, under 

some conditions, trapped particles may be relevant, in 

particular for the generation of bootstrap current. 

The previous investigations were carried out in the 

axisymmetric Multiple Helicity (MH) state of the RFP, 

where the plasma, in order to self-sustain the magnetic 

configuration, develops a multitude of saturated tearing 

instabilities. The resulting overlapping of magnetic islands 

leads to magnetic field lines chaos. Recent advances in the 

external control of magnetic modes have allowed RFPs to 

access the improved Quasi-Single Helicity (QSH) regime, 

where one mode dominates over a background of 

secondary ones. This state preludes to the purer, 

numerically predicted ([7] and refs. therein), Single 

Helicity (SH) regime, characterized by negligible 

secondary mode amplitudes. In such regimes, a central 

helical core with well conserved magnetic surfaces 

emerges. The structure winds around the torus with the 

pitch of the dominant mode. The chaos-free core is at a 

substantially higher (~ twice) temperature than its 

surroundings. Neoclassical effects on transport are 

expected to be enhanced there. The synergy between 

toroidal effects on the magnetic field and the helical 

structure leads to novel effects, including the emergence of 

a new class of orbits for trapped particles.  

Our goal is to provide a broad coverage of the subject 

of trapped particles in RFPs, with explicit reference to 

RFX-mod device [1]. In Sect. 2 we will address the pure 

axisymmetric case. This is done to provide reference 

conditions to be compared against equivalent simulations 

in SH states. The mathematical machinery to deal with 

toroidally symmetric states is well developed and known; 

hence, only few details of the calculations need to be 

provided. Sect. 3 deals with SH-QSH states. The 

mathematical handling of these topologies is more 

involved and we resorted to numerical simulations of test 

particle dynamics.                         

 

2. Trapped particles in toroidal axisymmetric 

RFPs. 

    Fraction of trapped particles. The fraction of 

trapped particles in RFPs has only a little difference with 

respect to that in tokamaks, where the trapped fraction is 

estimated as ft ~ (2ε)1/2 (ε =r/R<<1, with r and R minor 

and major radius respectively). In RFPs the poloidal 

magnetic field Βθ is of the same order as the toroidal 

magnetic field Bφ and the magnetic mirror effect results 

from both fields. 

Different approaches have been used and compared here 
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to calculate the trapped fraction: an analytical one, based 

on the equilibrium model described in [8, 9], and two 

numerical ones, based on the perturbative and full 

axisymmetric equilibrium codes, respectively the RFX 

equilibrium reconstruction code RFXTOR [11], and the 

FLOW code [3]. In all of these cases, a Maxwellian 

distribution of electron velocities has been assumed. 

In the analytical model the fields are expressed as: 

[8,9]: 

)cos1)(( θεφφ −= rBB o , )cos)(1)(( θΛθθ rrBB o −=  

with 

 

 

where Boθ ,Boφ are the equilibrium solution in cylindrical 

geometry. To first order in ε, we obtain  

)cos)(1( θδ rBB or −= =
, where 

22

θφ BBB +=   

and  

Since the trapped particles will be those with energy 

in the interval )1()1( δµδµ +<<− oo BEB , where 
2
||

2 vvE += ⊥ and Bv /2
⊥=µ , the corresponding cone for 

trapped particles is δ2/|| ≤⊥vv . Integration on the 

particle distribution function over this cone of the 

velocity space gives the estimate ft = δ2 . Since in RFPs 

Λ(r) < ε , which yields  δ < ε ,  the fraction of trapped 

particles in (toroidal) axisymmetric RFP tends to be 

smaller than that in tokamak with same aspect ratio ε.  

A more precise estimate of trapped particle fraction 

may be obtained by the formula found in [10], where the 

fraction is a flux surface function which is expressed by: 

 

                (1) 

 

where < > denotes the flux surface average, B0 =<B
2
>

1/2
, 

and λc = B0/BM, being BM the maximum of B on a given 

flux surface. We evaluated ft from Eq. (1) using RFX-mod 

edge magnetic measurements as input for the RFXTOR 

model as described in [11]. 

Fig.1 Trapped particles fraction ft. Solid line: (RFXTOR) 

RFX-mod MH equilibrium (Eq. 1); (Dashed line: 

Tokamak with the same aspect ratio); Dotted line: 

result from FLOW code. 

A typical profile for a standard RFX-mod equilibrium at 

Ip= 1MA is plotted against the radial coordinate in Fig. 1 

(solid line). The result is very close to the analytical 

estimate discussed above which is not shown in the figure 

for the sake of clarity.   

The FLOW code calculates 2-dimensional equilibria 

of magnetic confinement devices. It solves a generalized 

version of the Grad-Shafranov (GS) equation, which 

includes plasma rotation and reduces to the standard GS in 

the static case. Only static equilibria are considered here. 

In FLOW the magnetic fields are defined by the 

standard axisymmetric representation: Bφ = F(Ψ)/R, Bθ = 

∇Ψ×∇φ .  

The trapped fraction is given by the expression 

obtained in Ref. [8b p. 484-485]: 

( ) )(/)0,(1 ψθψψ Mt BBf =−=             (2), 

with  magnetic surface label, Θ angle along the surface.  

The trapped fraction is then computed directly from Eq. (2) 

for the same RFX-mod equilibrium as above, with central 

temperature T=Ti+Te=1.6 keV and flat density profile 

(βpol=7%). The result is plotted in Fig. 1 (dotted line). We 

note that spatial profiles for physical quantities which 

depend on the trapped fraction, e.g. transport coefficients 

and bootstrap current, must be calculated taking into 

account the full spatial dependence of the trapped fraction. 

We further remark that the maximum of ft does not occur at 

the plasma edge, as it would be the case for a tokamak: in 

an RFP ft is not a monotonic function of radius r. 

Bootstrap current and neoclassical resistivity. The 

bootstrap current JBS is evaluated with the knowledge of 

temperature and pressure profiles:  

 

 

(3) 

 

The functions Lij, , depend on ft as well as on magnetic 

equilibrium [12]. The results obtained with the RFX 

equilibrium model are shown in Fig. 2a (solid line). 

Fig.2-a Bootstrap and total (parallel) current profiles 

estimated by the models: JBS multiplied by 103.  

 

Similar results are obtained using FLOW based on two 

formulations similar to Eq. (3), which express the bootstrap 

current as given in Refs. [13, 14] (Sauter) and [15] 
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(Houlberg). (The last one is included in the public package 

named NCLASS). The formulas of the two approaches are 

obtained either by taking a numerical fit of a series of 

numerical solutions of the Fokker-Planck equation with the 

full collision operator [13], or using a Laguerre polynomial 

expansion for the collision operator [15]. Both of the 

formulations have been implemented in FLOW and 

provide nearly identical estimates: in Fig. 2-a, we only plot 

the Sauter model result (solid line), in order to compare it 

with the RFXTOR estimate (dotted line). All of the results 

are found to be in good agreement. 

Note that the parallel bootstrap current has a large 

poloidal component in RFPs. That is again due the toroidal 

and poloidal fields being of the same order of magnitude. 

The unambiguous result, confirming earlier estimates, 

is that, in present-days RFPs, the bootstrap mechanism can 

provide only a negligible amount of additional current. 

The results of [13-15] can also be used to calculate 

neoclassical resistivity. Numerical evaluation of 

neoclassical resistivity has been included in the 

postprocessing routines of FLOW in the process of 

evaluating the bootstrap current. The reader is referred to 

the literature for the details of the models. In the present 

work, we will only refer to the simplest approach (from the 

user’s point of view): that is, to the Sauter model. In Ref. 

[13], neoclassical conductivity is expressed with a 

numerical fit as a function of ft(eff). For the same standard 

equilibrium as above the neoclassical resistivity profile 

shown in Fig. 2-b is obtained. Note that neoclassical 

resistivity is larger than Spitzer resistivity by a numerical 

factor going from ~1.1 in the center to ~2 at the edge 

consistently with the estimates performed in [16]. 

Fig.2-b Neoclassical resistivity profile for an RFX 

standard equilibrium at Ip=1 MA. 

 

Banana orderings with respect to collision and 

chaotic decorrelation scales. In this paragraph, we 

provide more details about the ordering of the main 

parameters of a banana orbit, namely its width on the 

mid-plane and the bounce time (τbounce, the period of a 

complete banana orbit), with respect to collisions and 

chaotic correlation time (in MH state). To perform these 

calculations, we will make use of the Hamiltonian guiding 

centre code ORBIT [2]; we will normalize all times to the 

toroidal transit time on the axis (τtor=2 π R0/vth, with vth the 

thermal velocity, in RFX-mod τtor ~ 40-60 µs for protons 

with E=250-500 eV), and characteristic lengths to one 

toroidal turn.   

The parameters relative to the banana orbit are reported in 

table I for H-ions deposited with energy 250, 500 and 1 

keV at r=10 cm and r=25 cm respectively (minor radius 

a=46 cm in RFX-mod). The banana width ranges between 

0.2 and 1 cm, and is of the same order of the proton 

gyroradius; in the electron case, with energy E=1keV it is 

less than 1mm. Bananas are therefore rather small 

compared to that in Tokamak.   

The bounce time depends on the initial pitch of the 

particle: a minimum value is obtained for particles 

deposited with zero normalized parallel velocity (i.e. with 

particle pitch λ=v||/v=0), and goes to infinity for particles at 

the trapped-passing boundary. To get reference values, one 

can consider particles that perform a banana orbit  180° 

wide poloidally. The resulting values at different radii, 

typically τbounce /τtor ~ 1, are found in table I.  

 

Proton 

energy 

(eV) 

Bounce 

time/τtor   

 

r=10cm 

Banana 

width 

(cm), 

r=10 cm 

Bounce 

time, /τtor   

 

r=25 cm 

Banana 

width 

(cm), 

r=25cm 

Gyro- 

Radiu

s (cm)   

r=a  

250 0.94-1.2 0.5 0.77-0.86 0.2 0.5 

500 0.94-1.2 0.7 0.77-0.86 0.3 0.75 

1000 0.94-1.2 1.0 0.77-0.86 0.4 1.25 

Table I: bounce time (normalized to one toroidal transit) 

and banana width for protons deposited at r=10 and 25 

cm respectively, with energies 0.25, 0.5 and 1 keV. 

Bounce times refer to protons deposited with λ=v||/v=0 

(minimum value) and for a banana 180° wide on the 

poloidal plane. Gyroradius is evaluated at r=a.    

 

Note that the ratio τbounce /τtor does not depend on proton 

energy, since it is determined by the ratio between the 

poloidal and toroidal lengths when the particle follows the 

field line: an approximate value is given by 

torqrR ττ /2 0=
bounce [4]. A typical collision time for 

H ion-ion encounters  is one collision per  1 - 20 toroidal 

transits (thermal ions with energy  from 250eV to 1 keV, 

and density 4⋅10
19

 m
-3

); therefore, for thermal ions the 

bounce time is somewhat smaller than the collision time 

(τν), while in high density regimes classical  (collisional) 

transport could overcome neoclassical transport.  

A banana orbit, in the MH state, can be modified by 

magnetic chaos and one might envisage a de-correlation 

(sort of de-trapping) effect to come into play.  

In Fig. 3 the parallel correlation length of the chaotic field 

is plotted as a function of the magnetic field fluctuation 

(normalized to the poloidal field at the edge). With typical 
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fluctuation strength of 4%, the correlation length is about 

1.5 toroidal turns, therefore closer to the collision length 

than to the banana toroidal excursion. To get the correlation 

length about 0.2 toroidal turns (therefore, comparable to 

the banana toroidal precession width), we have to increase 

fluctuations up to 50% of the equilibrium poloidal field, 

which is rather unrealistic.  

 

Fig.3 Normalized parallel magnetic correlation 

length as a function of the normalized mode 

amplitude. Inserts: banana orbit of a particle 

deposited at r=25 cm, with: b/Bθ(a) (a) =4% and 

(b)=50%. Banana orbits are modified by the chaotic 

field only at very large values of fluctuations. In 

RFX-mod we expect bananas not to be affected by 

chaos, even in MH state.    

 

Inserts in Fig. 3 show the poloidal sections of a banana 

orbit at various fluctuation amplitudes: b/Bθ(a)= 4% (a) and 

50% (b). It is evident that with 4% fluctuations the banana 

is almost unaffected, while the orbit is significantly 

deformed only in the case with 50% fluctuations. Trapped 

particles explore too short a portion of magnetic field line 

to experience chaos effects.    

Summarizing: in the RFP, the proton bounce time is 

about 2/3 to 1 toroidal turn; even in the chaotic MH state 

the banana orbit is not affected by magnetic fluctuations. 

The typical ordering for protons is: τbounce= (2/3) ÷1×τtor < 

τcorr < τυ, with τcorr the characteristic time to cover the 

correlation length (with thermal speed). The typical times 

characterizing particle dynamics in the MH RFP are all of 

the same order of magnitude, differing by a factor  2. In 

RFX-mod high density regimes, however, the collision 

time becomes smaller than the others and significant 

effects can then be expected on transport. 

 

3. Particle dynamics in SH states 

 Single particle motion. The behavior of particle 

trapping is deeply modified when the SH configuration of 

the magnetic field is considered. 

In fact, numerical simulations show that the presence of a 

helical structure increases the fraction of trapped particles 

by a factor depending on the SH mode amplitude. A 

typical experimental helical modulation (m=1, n=7) of the 

order of 3%-6% of the axisymmetric field, enhances the 

total fraction of trapped particles by 5%-10%.  

The helical geometry introduces a new field ripple 

with respect to the axisymmetric case: as shown in Fig. 4 

the variation of |B| experienced by a particle following a 

single field-line is given by the superposition of a toroidal 

ripple (slow sinusoidal variation), corresponding to the 

toroidal geometry, and a helical ripple (faster variation) 

corresponding to the helical component. As a 

consequence, two types of trapping are possible; particles 

can be either localized or blocked, depending on initial 

position, pitch angle and helical amplitude [17]. The 

localized - high magnetic moment - particles (trapped in 

the helical ripple), execute the usual thin banana orbits 

with a simple toroidal drift across the island, almost 

insensitive to the helical geometry. The blocked particles 

(trapped in the toroidal ripple), with a lower magnetic 

moment, encounter the mirror points along the helical 

structure after some poloidal turns and have larger radial 

excursions inside the island itself, thus being subjected to 

a significant radial transport. These particles can be found 

throughout the plasma section, but in particular in the 

exterior region of the island: here the trapped particles 

can constitute more than one half of the local particle 

population (=0 plane) [18].  

Fig 4: Magnetic field ripple in a SH configuration (initial 

p=0.04) with the three trapping states:  

localized (i), blocked (ii) and passing (iii). 

 

The transition between these two trapping states is 

possible even in absence of collisions, in analogy with  

the stellarator behavior [19]. Considering all the kind of 

trapping mechanisms and assuming a uniform deposition 

of particles only within the helical structure, it has been 

evaluated that the total fraction of trapped particles 

achieves the value 40%. 

Neoclassical transport in QSH states. The transport 

resulting from trapped and passing particles in the helical 

regimes of the RFP has been studied by the Hamiltonian 

guiding center code ORBIT. To this end a dedicated 

algorithm has been developed, which is described with 

details in [20]. It is based on the determination of the 

helical magnetic flux ψM
 associated to the helical 

magnetic surfaces reconstructed in RFX-mod QSH 

(a) 

(b) 
(a) 

(b) 
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regimes. An example of normalized helical flux contour 

plot on a poloidal cross section is shown in fig. 5-a. 

Different temperatures and collisional regimes of the 

plasma background in the range Te,i = 300 -1000 eV are 

considered. A set of test particles with random pitch angle 

 are deposited inside the helical structure. Following 

their dynamics, particles are considered lost when they 

cross a prescribed helical loss surface (black curve in fig. 

5-(a)); they are then injected back in the helical axis 

position, so as to keep constant the particles number 

during the whole simulation. Test particles are 

mono-energetic and characterized by the same 

temperature of the plasma background. Both classical and 

pitch angle collisions are implemented in the simulations. 

The first are responsible of a random displacement of the 

guiding center position of a test particle by a Larmor 

radius, while the latter changes randomly the pitch angle. 

Energy is conserved in these collisions and, by changing 

the pitch angle, a particle can switch from trapped to 

passing or vice-versa.  

Simulations at low plasma temperatures (about 

250-300 eV) in QSH (both with and without secondary 

modes) show that the steady-state density of test ions or 

electrons is linear versus the normalized helical magnetic 

flux ψM
, decreasing from a maximum value at the island 

O-point (source) to zero at the helical loss surface, as 

seen in Fig.5-b), black line. 

Fig.5 a) Normalized helical flux ψM 
contour plot on a 

poloidal cross section. The black curve 

corresponds to the loss helical surface. b) Ion 

distribution inside the helical structure in a 

RFX-mod QSH shot for T =300eV (red curve) and 

for T=800eV (black curve).  

 

 A diffusion coefficient D can be estimated as the ratio of 

the outgoing flux and the density gradient (Fick’s law). 

Typical values of D for low temperature QSH in 

RFX-mod plasmas have been found to be in the range: 

0.1-1 m²/s [21] to be compared with the classical 

prediction of 0.05-0.1m²/s. The increase of D is a direct 

consequence of the enhancements of neoclassical effects 

within the helical structure mainly due to the larger 

banana width with respect to a pure axisymmetric case, as 

will be shown in the following. 

Recently thermal measurements performed in the 

RFX-mod experiment during QSH states have shown 

large helical structures, identified by significant 

temperature gradient in the plasma core, which can reach 

a considerable size (25-50% of plasma radius) and 

temporal persistence up to 85% the flat top phase 

(∼200ms) of the discharge. These states are characterized 

by the separatrix expulsion from the helical core and are 

named as SHAx regimes (Single Helical Axis, see [22]). 

Electron temperatures in these plasmas can be of the 

order of 1keV which corresponds to a very low 

collisionality. In fact, the collision frequency of the test 

ions with the background decreases from about 4kHz at 

300 eV to 0.6 kHz at 800 eV. The ion distribution in these 

conditions shows a novel feature which is clear looking at 

the red curve in Fig.5: it is not anymore characterized by 

a linear trend and thus a constant global diffusion 

coefficient cannot be easily defined. The reason of this 

non-diffusive behavior can be understood by analyzing 

the pitch angle of the lost ions and of those closer to the 

last conserved helical surface (highest ψM
 values). We 

have reported the corresponding pitch angle distribution 

in Fig. 6 which shows that most of these lost ions are 

trapped with a pitch angle close to zero.   

At very low collisionality (high temperatures) passing 

ions are affected only by the remnant chaos (by 

secondary modes) and from a small thermal drift due to 

their non-zero temperature; thus their transport is very 

low. This is shown in Fig. 6-(b) where transport 

simulations for only passing (black, =0.7-0.9) and only 

trapped ions (red, =0-0.2) have been performed at 

T=800 eV.  

Fig.6 a) Pitch angle distribution of the escaping ions.  

     b) Simulation of transport in QSH for only trapped 

(red) and only passing ions (black). 

 

Even in a very low collisionality regime trapped particles 

diffuse across the helical magnetic surfaces and their 

density distribution is almost linear. On the other hand, 

until the level of the secondary modes is low enough, 

passing particles follow the helical magnetic field lines 

inside the helical structure and perform many toroidal 

turns until a collision deflects them from their initial orbit. 

These simulations show that the ratio of the diffusion 

coefficients using only passing (Dpas) or trapped particles 

(Dtrap) is about Dpas / Dtrap ∼ 0.01 at Te=Ti=800 eV and 
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confirms that neoclassical effects become dominant when 

reducing collisionality. The values of D reported above 

have been obtained by the geometric average between the 

electron De and the ion diffusion Di coefficients 

computed by the numerical simulations. This is 

performed in order to estimate the ambipolar effect 

within the helical structure as done in [17]. For a more 

detailed and correct evaluation of D, an electric field E 

should be implemented in the code to ensure the 

ambipolarity condition. Anyway, it must be noted that 

while in the pure SH case the electron De and ion Di are 

quite different (Di/De∼5), in the more realistic QSH 

scenario they are much closer each other (Di/De in the 

range 1-2]). In this latter case the electric field required 

should be very small and the ambipolarity constraint may 

provide only a mild impact.  

As previously described, trapped particles inside a 

magnetic island can be both helically or poloidally 

trapped. The radial excursion of the guiding center 

position in a banana orbit is an increasing function of the 

ion thermal energy. While at a temperature of 300 eV its 

size is of the order of 0.5cm for hydrogen, it can reach 

also values between 2 and 5cm for Ti in the range 0.6-1.5 

keV. Thus, few banana orbits are enough for an ion to 

drift out the helical structure. On the contrary, electrons 

are less affected by neoclassical effects: because of their 

low mass, banana orbits have a very small width (less 

than 1 mm in the radial direction, like in MH).  Ion 

species with higher atomic mass A and electric charge Z 

are usually characterized by thinner banana orbits with 

respect to a hydrogen ion: the radial width excursion 

depends on the thermal velocity of the considered particle, 

which for a given energy E is proportional to (E/A)
1/2

. For 

example, an ion of OVII with A=16 has 1/4 of a 

hydrogen banana width for the same energy E. 

Experiments and numerical studies on impurity transport 

mechanisms in the helical structure are still in progress.  

 

4. Conclusions 

The contribution of particle trapping to various 

aspects of the RFP physics has been investigated in the 

paper. The trapped particle fraction in an axisymmetric 

RFP is almost the same as in a tokamak with the same 

aspect ratio. The banana width is typically comparable 

with the gyro-radius, with peculiar consequences on the 

actual weight of neoclassical effects on macroscopic 

quantities and phenomena: the bootstrap current remains 

negligible as compared to the tokamak case, while the 

resistivity turns out to be enhanced up to a factor 2 in the 

axisymmetric case. Further work will be done for the 

computation of such quantities in the Single Helicity 

configuration, where the total fraction of trapped 

particles increases up to ~40%, against the axisymmetric 

value ~30%. As far as particle transport is concerned, 

particle trapping is found to have a strong influence 

especially in the QSH configuration; as proved, this is the 

foremost mechanism of transport across the helical 

structure at the rather low collisionality achieved in 

QSH-SHAx regimes of RFX-mod [21]. Indeed the 

neoclassical effect generates the main contribution to the 

average diffusion coefficient (which is presently 

estimated to be one order of magnitude larger than the 

classical contribution). On the other hand, due to the 

reduced level of magnetic chaos, passing particles are 

confined for a very long time along well conserved 

magnetic surfaces. Conversely, in the chaotic MH states, 

the neoclassical contribution to particle transport is 

largely overcome by passing particles, which participate 

to long-distance flights along the chaotic magnetic field 

lines [22].  

Finally, we point out that, due to the significantly 

large fraction of trapped particles - locally very large in 

QSH-SHAx regimes - the instability of trapped electron 

modes (TEM) is likely to play a role in the transport for 

low chaos RFPs, which is a topic under investigation. 

This work was supported by the European 

Communities under the contract of Association between 

Euratom/ENEA.  
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