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To evaluate an anomalous radial transport of high energy ions, i.e., alpha particles and/or energetic
ions due to NBI, we formulate a simple numerical model. By assuming that the anomalous transport is
described by diffusion and flow terms, the transport term is averaged over bounce and circulating motion
of particles and is added to the bounce averaged Fokker-Planck equation. As a numerical result of the
presented model, time evolution of the velocity distribution function of alpha particles is presented.
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1. Introduction
The achievement of the high performance plasma

with controlled fusion reaction is the main subject
in the fusion reactor. As a numerical approach, we
are developing the TOPICS-IB (TOPICS extended
to Integrated simulation for Burning plasma) code[1]
to simulate the burning tokamak plasmas, where
many basic processes, e.g., the radial transport of
core plasma, MHD equilibrium and instabilities, al-
pha heating, current drive, plasma flow in the scrap-
off layer, etc., are complexly related. The numerical
performance of TOPIC-IB code depends on numeri-
cal modelling of each basic process. One of the most
important physical issues is the analysis of transport
properties of high energy ions, which are alpha par-
ticles and/or energetic ions injected by neutral beam.
The slowing down processes of energetic ions can be
analyzed by using the OFMC (Orbit Following Monte-
Carlo) code [2] by using many test particles . Further-
more, many numerical studies are also actively pushed
forward understanding of anomalous transport, for ex-
ample, which is caused by TAE-mode instabilities[3].
Numerical costs of these numerical simulations are
very expensive. To calculate the radial transport of
high energy ions under the control of TOPICS-IB
code, we propose a simple numerical model based on
the bounce averaged Fokker-Planck equation. A nu-
merical code is developed to solve the time evolution
of the velocity distribution function and an obtained
numerical result is presented.

2. Basic Equation
The drift-kinetic equation[4] is written as

∂f

∂t
+ v cos ηb·∇f + η̇

∂f

∂η
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=
�

j

Cj(f) + Sp − Lth(f)− ∇·ΓAN,(1)

where v is the particle speed, η is the pitch angle of the
particle velocity, and b is a unit vector along the mag-
netic field B. The time derivative of the pitch angle,
η̇, shows bounce or circulating motion of particles in a
tokamak configuration. Cj(f) is the Coulomb collision
term to denote collisions with bulk plasma species j.
The bulk plasma is assumed to be Maxwellian, whose
density and temperature are calculated by a transport
code of the bulk plasma. Sp is a particle source caused
by the fusion reaction or ionization of NBI. The loss
term

Lth(f) =
f

τth

�
m

2πwLTash

�3/2

exp
�
− mv2

wLTash

�
(2)

removes slowed down alpha particle or injected ion as
helium ash or bulk plasma, where τth is the thermal
collision time. The velocity range of removed particles
is expressed by the constant value wL. In this article,
the electric field and the drift motion across the mag-
netic field line are ignored. And a radial transport is
assumed to be caused by a divergence of an anomalous
particle flux ΓAN.

We discuss the equation in the pseudo toroidal
coordinate system, where ρ, ζ ,and θ are minor radius,
toroidal angle, and poloidal angle, respectively. The
relations between the pseudo toroidal coordinates and
the cylindrical coordinates are R = R0+ρ cos θ, ζ = ζ,
and z = ρ sin θ. The axisymmetric magnetic field B

is expressed by

B = ψ�
P(ρ)∇ρ×∇ζ + I∇ζ, (3)

where ψP is the poloidal magnetic flux and its prime
denotes d/dρ and I means Bt0R0 on the magnetic
axis. To average Eq.(1) over the particle motion in this
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magnetic field, we follow the standard procedure[5].
The second term of the left-hand side of Eq.(1) be-
comes

v cos ηb·∇f =
v cos η
qR

∂f

∂θ
. (4)

The safety factor q can be expressed by q(ρ) =
ψ�

T(ρ)/ψ
�
P(ρ), where ψT is the toroidal magnetic flux.

The third term is also rewritten by

η̇
∂f

∂η
=

μ

mv sin η
I

qR3

∂R

∂θ

∂f

∂η
, (5)

where μ is magnetic moment and the relation∇·B = 0
is used.

When the particle velocity and pitch angle on the
equatorial plane in the low field side are shown by
v0 and η0, by using the energy conservation and the
adiabaticity of magnetic moment, the parallel velocity
or pitch angle at the poloidal position θ is obtained as:

v�(ρ, θ) = v0 cos η(ρ, θ)

= ±v0

�
1− ψB(ρ, θ) sin2 η0. (6)

The definition of function ψB is ψB(ρ, θ) =
B(ρ, θ)/B(ρ, θ = 0). This equation shows a bounce
or circulating motion along the magnetic field line.
We define the period of bounce motion: τB =�
qRdθ/

��v�
��. The orbit average of “X” during the

period τB can be expressed by

�X�B =
1
τB

�
qRdθ��v�

�� X. (7)

When it is considered that the bounce time τB is con-
siderably shorter than the collision relaxation time τC
and the anomalous transport time, the velocity distri-
bution function can be expanded by the power of τB,
i.e. f = F0+(τB/τC)F1+(τB/τC)2F2+ · · ·, where Fi

is not dependent on the bounce phase. By the bounce
orbit averaging, Eq.(4) and (5) are annihilated. As a
result of bounce averaging, Eq.(1) becomes

∂λF0

∂t
=

�
j

�Cj�B + λ�Sp�B − λLth(F)

−λ
�
∇·ΓAN

�
B
, (8)

where λ = v0 cos η0τB/R0 is proportional to length of
bounce orbit. We note that Eq.(8) is described in the
(v0, η0, ρ)-space.

When a bulk plasma species is isotropic, the
bounce averaged Coulomb collision operator has been
calculated as the following[5]:

�Cj�B = − 1
v2
0

∂

∂v0

�
v2
0S0v

�

− 1
v0 sin η0

∂

∂η0

�
sin η0S0η

�
, (9)

S0v = −D0vv
∂F0

∂v0
+ F0vF0,

S0η = −D0ηη
1
v0

∂F0

∂η0
,

D0vv = λ�Dvv�B, F0v = λ�Fv�B,

D0ηη = λ

�
tan2 η0

tan2 η
Dηη

�

B

,

whereDvv, Fv, andDηη are the conventional Coulomb
collision coefficients[6]. The bounce averaging of par-
ticle source term and thermal loss term is absolute.

3. Modelling of Anomalous Transport
We consider the anomalous transport in the di-

rection of minor radius ρ. The last term of Eq.(8) is
described as

λ
�
∇·ΓAN

�
B
=

λ

τB

�
qRdθ��v�

��
1
ρR

∂

∂ρ

�
ρRΓAN

ρ

�
,

where the bounce time τB is enough shorter than the
time-scale of anomalous transport. Since R is can-
celed out in front of the differential operator of ρ, the
integration of θ and the differential operator of ρ are
commutative. Therefore,

λ
�
∇·ΓAN

�
B
=
1
ρ

∂

∂ρ

�
ρλ

�
ΓAN

ρ

�
B

�
. (10)

is obtained.
The anomalous transport is assumed to be de-

scribe by diffusion and flow, i.e., the bounce averaged
particle flux is expressed as

λ
�
ΓAN

ρ

�
B
= −DAN

0

∂λF0

∂ρ
+ FAN

0 λF0, (11)

where

DAN
0 (v0, η0, ρ) =

�
DAN

�
B
,

FAN
0 (v0, η0, ρ) =

�
FAN

�
B
.

(12)

In this article, we show an anomalous transport caused
by a disturbance of the TAE-mode type, as an exam-
ple. The anomalous transport coefficients are assumed
by

DAN(v, η, ρ, θ) = D̂AN(ρ)W(v, η, ρ, θ),
FAN(v, η, ρ, θ) = F̂AN(ρ)W(v, η, ρ, θ). (13)

The weight function, W, is given by

W(v, η, ρ, θ) = exp
�
−

�
v� − VA(ρ, θ)
ΔVA(ρ, θ)

�2
�
, (14)

where VA is the Alfven velocity and Δ shows a res-
onance width. The absolute values of D̂AN(ρ) and
F̂AN(ρ) are determined to assure that the maximum
values of DAN

0 (v0, η0, ρ) and FAN
0 (v0, η0, ρ) with fixed

ρ are proportional to the absolute value of pressure
gradient of high energy particles, which is calculated
by the second moment of F0.
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4. Numerical Results
First the numerical method is briefly explained.

We wish to solve Eq.(8) in the domain

0 < v0 < v0max, 0 < η0 < π, 0 < ρ < a,(15)

where a is the minor radius and v0max is numerical
maximum of the speed. We do this by converting
the differential equation to an algebraic equation us-
ing the finite difference method. In this procedure,
we weave the algebraic matrix so that a symmetrical
property of F is kept, more specifically, F0(v0, η0, ρ) =
Fo(v0, π− η0, ρ) in the pitch angle of trapped particle
range, which broadens with increasing of ρ. The al-
gebraic matrix, which contains five bands, is inverted
by using the conjugate gradient method. As for the
numerical method for time advancing of Eq.(8), we
employ the Crank-Nicholson scheme.

We show a numerical result of velocity distribu-
tion function of alpha particles produced by the D-T
fusion reaction. The anomalous transport is started
from an initial steady state balanced by the thermal
loss term without radial transport. The main param-
eters are the following ITER-like parameters: major
radius is R0 = 6.2m, minor radius is a = 2m, toroidal
magnetic field is Bt0 = 5.3T at the magnetic axis,
profile of safety factor is q(ρ) = 0.8 + 2.2(ρ/a)2. It
is assumed that the bulk plasma is stationary and
composed by the deuterium, tritium and electrons,
whose radial profiles are the followings: TD(ρ) =
TT(ρ) = Te(ρ) = 20×(1−ρ2)1.5keV, nD(ρ) = nT(ρ) =
ne(ρ)/2 = 5×1019(1−ρ2)0.3/m3. Here, the helium ash
is not considered and Tash in Eq.(2) is substituted by
TD(ρ). It is assumed that wL = 3, since the value of
wL in this range has little effect on the transport of
high energy particles. The velocity distribution func-
tion is calculated with an initial condition of F0 = 0
and reaches almost a steady state after one second.
The radial profiles of pressure of active alphas are
shown by the dotted curve in Fig.1. We consider this
profile is the initial state of the anomalous transport
process.

In this article, we show a radial transport caused
only by an anomalous diffusion. Figure 2 (a), (b),
and (c) describe the intensity of diffusion coefficient
DAN

0 (v0, η0, ρ) on the (v0, η0)-plane at ρ/a = 0.05,
0.35, and 0.85, respectively, where Δ in Eq.(14) is 5%
and mαv

2
0max/2 =5MeV. The resonance region in ve-

locity space expands with increasing of aspect ratio.
The white lines show the boundary between passing
particles and trapped particles. The diffusion coeffi-
cient in trapped particle region becomes symmetrical
against v� = 0. The profile of peak value of diffusion
coefficient DAN

0 (v0, η0, ρ) at every magnetic surface is
shown in Fig.3 as a function of ρ, where the absolute
value is given as a numerical parameter. In this nu-
merical model alpha particles are not lost from the
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Fig. 1 Pressure profile of α particles. The dotted curve
shows the initial state(t = 0) and the solid curve
shows the result of radial diffusion at t = 0.5s.

(a)

-1 0 1
V0// /V0max

0

1

V 0

T /V
0m

ax

ρ/a=0.05 ρ/R0 =0.016

0

0.5

1
arb.unit

(b)

-1 0 1
V0// /V0max

0

1

V 0

T /V
0m

ax

ρ/a=0.35 ρ/R0 =0.11

0

0.5

1
arb.unit

(c)

-1 0 1
V0// /V0max

0

1

V 0

T /V
0m

ax

ρ/a=0.85 ρ/R0 =0.27

0

0.5

1
arb.unit

Fig. 2 Intensity of diffusion coefficient DAN
0 (v0, η0, ρ). (a),

(b), and (c) are located at ρ/a = 0.05, =0.35 and
=0.85, respectively.

plasma surface ρ/a = 1, since the diffusion coefficient
fades away near the plasma surface.

Figure 4 shows the time evolution of the stored en-
ergy ,Wα, and total particle number, Nα, by t = 0.5s
The radial profile of α particle pressure at t = 0.5s
is described by the solid curve in Fig.1. The veloc-
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Fig. 3 Profile of maximum value of diffusion coefficient
DAN

0 (v0, η0, ρ) at every magnetic surface.
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Fig. 4 Time evolution of stored energy ,Wα, and total par-
ticle number, Nα.

ity distribution functions, F0(v0, η0, ρ), at t = 0.5s are
shown in Fig.5, where (a), (b), and (c) correspond to
ρ/a = 0.025, 0.375, and 0.875, respectively. The ve-
locity regions of lost particles in Fig.5(a) and (b) are
broader than the resonance region shown by Fig.2(a)
and (b). And also the velocity region of existing par-
ticles in Fig.5(c) is broader than the resonance region
shown by Fig.2(c). These are caused by the diffusion
and slowing down due to the Coulomb collisions.

5. Summary
To evaluate the radial transport of high energy

ions, we have formulated the bounce averaged Fokker-
Planck equation with the radial transport term, which
contains diffusion and flow terms. And a sample
of numerical analysis of the formulated equation is
presented. The CPU time required to run the pre-
sented sample on a personal computer with frequency
of 2GHz is about 30 minutes, where (51×51) veloc-
ity grid points, 21 radial grid points, and time step
of 0.1ms are used. We think that the presented nu-
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Fig. 5 Intensity of velocity distribution function,
F0(v0, η0, ρ). (a), (b), and (c) are located at
ρ/a = 0.025, 0.375 and 0.875, respectively.

merical model can be brought into the TOPICS-IB
code. In this article, we do not treat the neoclassical
transport process based on disturbed drift orbits due
to the Coulomb collision. Although we assume that
the anomalous transport is caused by the TAE mode,
a consistency of transport coefficient with the MHD
theory is not considered. These problems are left to
future studies.
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