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Least square method has been used to solve the inverse problem from flux loop measurement to the boundary 
values on the CCS (Cauchy Condition Surface). When the CCS method is applied to real experimental data, noise 
superposition is inevitable. By introduction of SVD (Singular Value Decomposition) and truncation of the least SV 
components, we can expect the shape reproduction robustness against the noise. The truncation simulation of the 
less SV component shows shape reproduction error less than no truncation, when the measurement error exceeds a 
certain value. 
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1. Introduction 
CCS (Cauchy Condition Surface) method is a 

numerical approach to reproduce plasma shape, which 
has good precision in conventional tokamak [1].  In 
order to apply it in plasma shape reproduction of ST 
(Spherical Tokamak), the calculation precision of the 
CCS method in ST has been analyzed [2]. The precision 
was confirmed also in ST, and rather difficulties in 
calculation of ST equilibrium configuration with low 
aspect ratio were found. Least square method has been 
used to solve the inverse problem from flux loop 
measurement to the boundary values on the CCS. When 
the CCS method is applied to real experimental data, 
noise superposition is inevitable. By introduction of SVD 
(Singular Value Decomposition) and truncation of the 
least SV components, we can expect the shape 
reconstruction robustness against the noise, since the 
measurement error affects the solution error in proportion 
to (not the square of) the condition number, which is 
defined as maximum SV divided by minimum SV.  The 
truncation simulation of the least SV component shows 
shape reproduction error less than no truncation, when the 
measurement error exceeds a certain value. 
 

2. Shape Reconstruction by CCS Method 
The Cauchy-Condition Surface method is a kind of 

exact numerical method, which is based on the boundary 
integral equation. The Cauchy-Condition surface is 
defined as a hypothetical plasma surface, where both the 
Dirichlet (�) and Neumann (Bt) conditions are unknown. 
This surface is located inside the real plasma region. It is 
assumed that CCS encloses all the plasmas and there are 
no plasmas outside the CCS [1]. 

According to the static Maxwell’s equation, three 
types of boundary integral equations can be given by 
using the magnetic sensor signals and poloidal coil 
current data [1].  
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Where )( fx�  is poloidal flux function at flux loop 
position, )(z�  is poloidal flux function on CCS,  is 
Green’s function (a poloidal flux function for toroidal 
filament current in axisymmetric geometry) and  
is current density in eq. (1).  is magnetic field at 
magnetic probe position and  is normal vector 
perpendicular to the magnetic probe in eq. (2). 

G

(JC

)(x

)y
)( BBt x

n
�  is 

poloidal flux function on CCS and )(z�  is also poloidal 
flux function on CCS in eq. (3). 

The discretized formulas for flux loops, magnetic 
probes and CCS are as follows [2]. 

 
(1a) 

 
                                      

(2a) 
                                              i i

                                        
(3a) 

 
Where, M is the number of discretized points along CCS. 

( )fx�  is the flux loop measurement.  is the 
magnetic probe measurement.  and are the 
flux and B

( )BBt x
)it z� �( )iz�

t value (tangential component), repectively, of 
discretized points on CCS. PFI  is the poloidal field coil 
current included in the calculation region. 

1 ( , )F f izW x , 1 ( , )B f iW x z , ,1 (C fW x ) 2 ( , )F B izW x , 
2 ( , )B B izW x , W x ,2 ( )C B 3 ( , )F izW x , 3 ( , )B iz 3CWW x ,  are 

coefficient matrices which can be calculated beforehand. 
In eqs. (1a), (2a) and (3a), 

 are 
coefficient matrices which can be calculated beforehand. 
In eqs. (1a), (2a) and (3a), 

( )x

( )( )fx� ,  and ( Bx )Bt PFI  are 
known (measured) values, and  and are 
unknown values. Though the number of the unknown 
values is 

( iz )� )it z� �

M2 , the final number of the unknown values is 
M , since  and  are related through eq. 
(3a). 

( )iz � �� )it z

Equations (1a), (2a) and (3a) are coupled and the 
observation equation can be expressed in matrix form, and 
then  and � � at several discretized points along 
CCS can be evaluated by using the least square method.  

( )iz� )it z

Then the flux distribution can be calculated using 
equation (4) and the outmost magnetic flux surface or 
plasma shape can be found by plotting the contour. 

 
(4) 

 
Where, ( )x� is the flux value at arbitrary point, and 

4 ( , )F izW x , 4 ( , )B iW x z and  are coefficient 
matrices.  

4 ( )CW x

 

3. Least Square Method and SVD  
The observation equation is , where A is 

coefficient matrix (not square), x is unknown value (flux 
and Bt value) on CCS and b is known value measured by 
flux loop and/or magnetic probe. In case of least square 
method,  is minimized and 

 is solved as , where 
superscript t denotes transpose. Therefore the 
measurement error affects the solution error in proportion 
to square of the condition number, which is defined as 
maximum SV divided by minimum SV. In case of SVD, 
however, 

bAx �

)()( bAxbAx t ��

)()( bAxAA tt � )()( 1 bAAAx tt ��

A  is decomposed as (  and 
 is solved as . Therefore 

the measurement error affects the solution error in 
proportion to the condition number.  

)tUWV
bUVW t )( 1��bxUWV t �)( x

In case of CPD (Compact PWI experimental Device), 
for example, SV is shown in Fig. 1, the singular vector U 
and V are shown in Fig. 2 with the measured flux value. 
Figure 3 shows the error and the contribution fraction, 
which is defined as the accumulated SV squared. The 
error decreases by accumulation of even mode, since the 
plasma shape is symmetrical with respect to the 
equatorial plane in this case. The plasma shape 
approaches the true shape with accumulation of the 
modes as shown in Fig. 4.  If the least SV component is 
neglected, the detailed shape is not reconstructed, but the 
measurement error may not affect the reconstructed shape 
error, since the condition number decreases. 
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Fig.1. Singular values in descendeing order.  
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Fig.2. (a) Eigen vectors U and flux values at flux loop,
(b) Eigen vectors V and flux values on CCS in
anti-clockwise beginning at the outboard. 
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Fig.3. Error and contribution fraction in decreasing
order of SV. 
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 4. Noise Effect in SVD 
 The observation equation is , where A is 

coefficient matrix (n, m) (n > m), x is unknown vector (m, 
1) on CCS and b is known vector (n, 1) measured by flux 
loop and/or magnetic probe. In case of least square 
method, normal equation  is calculated 
and it is solved as . Therefore the 
effect of rounding errors , where 
the condition number is defined as the ratio of singular 
values . When the rank of , 
however, is full rank  and  is 
decomposed as , (where U is matrix (n, m) of 
singular vectors, W  is diagonal matrix (m, m) of 
singular values,  is matrix (m, m) of singular vectors,) 
the above solution  is the same as the 
solution . Therefore the effect of 
rounding errors is the same, when the rounding errors are 
negligibly small in matrix calculation. 

bAx �
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Figure 5 shows noise dependence of maximum flux 
loop difference (from the true value calculated by 
equilibrium code [3]) divided by the flux loop value, 
where measure noise is simulated by random noise. When 
less SV is truncated, noise effect decreases, though the 
detailed information is not transferred from flux loop 
value to the values on CCS. Therefore the error increases 
relatively slowly in the large noise region and the  

 
 
 
 Fig. 5. Noise dependence of maximum flux loop

difference divided by the flux loop value in case of
only first SV, 1st-3rd SV, 1st-5th SV and all
dependencies. 

 
 
 
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  Fig.4. Original plasma shape, reproduced shapes of only first SV, 1st-3rd SV, 1st-5th SV and all SV. In the 2 to 5th figures,

solid line is poloidal limiter and solid circles are flux loops. Small dotted circle inside the plasma boundary is CCS. 
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deviation is relatively small, though the error increases in 
the small noise region. The truncation simulation of the 
less SV component shows shape reproduction error less 
than no truncation, when the measurement error exceeds 
a certain value (15 % in this case). In this configuration, 
the ST plasma is symmetrical with respect to the 
equatorial plane and the number of free parameters on 
CCS is effectively half of 6. When the plasma shape is 
not symmetrical vertically or the degree of freedom is 
increased, the certain value for inversion may decrease. 
 

5. Summary 
CCS (Cauchy-Condition Surface) method is a 

numerical approach to reproduce plasma shape, which 
has good precision in conventional tokamak.  Least 
square method has been used to solve the inverse problem 
from flux loop measurement to the boundary values on 
the CCS.  When the CCS method is applied to real 
experimental data, noise superposition is inevitable.  By 
introduction of SVD (Singular Value Decomposition) and 
truncation of the least SV components, we could show 
the shape reconstruction robustness against the noise. 

When less SV is truncated, the error increases 
relatively slowly in the large noise region and the 
deviation is relatively small, though the error increases in 
the small noise region. The truncation simulation of the 
less SV component shows shape reproduction error less 
than no truncation, when the measurement error exceeds 
a certain value. In this configuration, the ST plasma is 
symmetrical with respect to the equatorial plane and the 
number of free parameters on CCS is effectively half of 6. 
When the plasma shape is not symmetrical vertically or 
the degree of freedom is increased, the certain value for 
inversion may decrease. 
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