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APPROPRIATENESS EXAMINATION OF THE MODEL FUNCTIONS 

FOR THE EQUILIBRIUM RECONSTRUCTION ANALYSIS 
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Graduate School of Science and Engineering, Saitama University 

255 Shimo-okubo, Sakura-ku Saitama-shi Saitama 338-8570, Japan 

We have developed a reconstruction code for axi-symmetric plasma using the finite element method and the 
nonlinear least-squares method using experimentally measured data; this code can be used for the analysis of 
stability and positional control in magnetically confined plasma. We examine whether the model function of the 
magnetic surface function can adequately reflect the structure using the measurement data and also examine the 
measurement accuracy by means of a χ2 test and by Akaike’s information criterion. Furthermore, the large number 
of calculations required using this code are performed at a sufficiently high speed by using semi-infinite elements 
and parallel computation using the parallel iterative solver of GeoFEM. 
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1. Introduction 
It is necessary to determine the two-dimensional 

distribution of magnetic flux and the pressure for the 
analysis of magnetohydrodynamic (MHD) stability and 
transport. This distribution is synthetically derived from 
the data of several experimentally measured parameters 
such as magnetic flux densities, plasma temperature, 
density inside and outside the plasma, toroidal plasma 
current, etc.; it enables a more accurate analysis and 
allows a comparison with the relaxation theory of 
magnetically confined plasma[1]. 

The equilibrium configuration of an axi-symmetric 
plasma described by the Grad-Shafranov equation is 
calculated by assuming two surface model functions I(Ψ) 
= rBt and P(Ψ), where r denotes the radial variable of the 
cylindrical coordinate (r, θ, z); Bt, the toroidal magnetic 
flux density; and P, the kinetic pressure. Further, using the 
nonlinear least-squares method (N-LSM) and FEM 
equilibrium code, we can obtain the functions I(Ψ) and 
P(Ψ) and the equilibrium by minimizing a residual. For 
this calculation, there exists a technique that can be used 
to determine the magnetic surface ψ using Green’s 
function method[2]. This technique does not require too 
much computing time. However, although our FEM code 
requires more time to determine ψ, we can calculate the 
magnetic surface more accurately and also determine the 
boundary conditions. 

Next, the model functions I(Ψ) and P(Ψ) are used to 
express more various continuous function, and to obtain 
the property that S has a single minimum point even if 
there exists a measurement error. We examine the 
statistical significance of the obtained model functions by 

means of a χ2 test and by Akaike’s information criterion. 
In this code, a large number of equilibrium 

calculations are performed to obtain a converged solution 
of the N-LSM. Therefore, the processes used to calculate 
the Jacobian matrix and the FEM analysis are parallelized 
using MPI and the GeoFEM[3] routine. We also examine 
how the use of this approach improves the calculation 
times. 
 

2. Equilibrium Reconstruction Analysis 
Equilibrium reconstruction code consists of the 

equilibrium analysis code solved Grad-Shafranov 
equation renewing the parameters of model function one 
after another and Marqurt code of non linear least-squares 
method minimized the residual between the experimental 
measurement data and calculated ones. Figure1 is the 
flowchart of equilibrium reconstruction code. 

 
Fig1.  Flow Chart of Equilibrium reconstruction 
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2.1 Equilibrium analysis code EAFP 
  Eq.(1) is the Grad-Shafranov equation in the 
cylindrical coordinates showed in Fig.2. Ψ＝const shows 
the magnetic surface and the functions I(Ψ) and P(Ψ) are 
depended only on the magnetic surface function Ψ. 
Therefore, the problem to find the magnetic distribution 
is considered to be same as that to find unknown 
functions I(Ψ) and P(Ψ). 
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    In our study, we used EAFP(Toroidal Equilibrium 
Analysis of an Axi-symmetric Free-Boundary Plasma) as 
equilibrium analysis code[4]. EAFP is a finite element 
method code which solved Eq.(1) as a free boundary 
problem on the condition of the magnetic surface 
functions I(Ψ) and P(Ψ), the shape of vacuum vessel and 
the conducting shell.  
 

 
2.2 Least-Squares Method 

Using parameters x1, x2, ..,xn+m, I(Ψ) and P(Ψ)  are 
expressed as follow: 

),,,,()( 21 mxxxgI yy =                  (2) 
 

),,,,()( 21 nmmm xxxhP +++= yy            (3) 
 

EAFP calculated physical values {yi}, such as 
magnetic flux density and kinetic pressure in figure3, 
temperature, electron density at several point of plasma, 
are the function of the parameter. Therefore, we renew 
the values to minimize the residue between the 
measurement data(test data) yi* with the value of 
equilibrium analysis yi given by 

 
                  (4) 

, and can get the solution of Grad-Shafranov equation 
fitting measurement data and so we find the practical 
magnetic surface function and distribution. For a 
non-linear least square method, we use the Marquardt 
algorithm[5] that has the merit of steepest descent method 
and Gauss-Newton method. 

 
2.3 Parallel calculation of the Equilibrium calculation 

We use the solver of a simultaneous linear equation of 
GeoFEM[6] for speeding up equilibrium analysis, where 
GeoFEM is the parallel finite element analysis system 
developed with development of earth simulator. The 
function of GeoFEM solver supports communication table 
and it is possible for this to develop parallel finite element 
method code. 

 

3. Appropriateness examination 
In our study, we analyze an equilibrium using the 

geometrical shape of TPE-2M RFP machine in the 
National Institute of Advanced Industrial Science and 
Technology in Japan. Figure4 shows a typical distribution 
of Ψ . And to examine the effectiveness of our 
reconstruction analysis code and the model functions, as 
the test data, we use yi*=yi +δyi, where yi*'s are EAFP 
analyzed values using the functions as 

 
 

        (5) 
 

 
  

(β0=0.1, λ=1.2, α=10) and δyi's are normal random 
numbers with variance σ. y~  is the value that 
standardize by Ψb and Ψc (Ψb and Ψc is Ψ in plasma 
surface and magnetic axis). We set a polynomial form 
function so that  P(Ψ) is zero in the plasma surface and 
the slope of P(Ψ) at the peak is zero. 

In practice, the magnetic surface test functions are 
unknown. Therefore it is desirable for magnetic surface 
functions to have generality for various function and to fit 
most statistically in case of using function of same form as 

 
Fig.2 Geometry of an axi-symmetric plasma 

 
Fig.3 Positions of Measurement Data 
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magnetic surface function in various function form when 
data fitting. So we execute χ2 examination and AIC 
(Akaike’s Information criterion)[7] to confirm generality of 
magnetic surface function P(Ψ) assuming the model 
function as follow. 

plbaP yyyy ~~~)~( 2 +++=       (6) 

We assume the polynomial form to the model function for 
the conditions that the magnetic axis is single and this is a 

strictly increasing function from ( )~(yP , y~ ) = (0,0) to 

(1,1). 
Each figure in Fig.5 shows a change of SSQ with 

one parameter of a, b, c and d in case of σ2(=1/wj in 
eq(4))=10-4, 10-2 and 0.04, where other parameters are set 
to these primarily values (a=0.15, b=0, c=-0.05, d=0). 

Although, the change of SSQ becomes small with 
increasing σ2 , SSQ has the minimum point near these 
primarily values up to σ 2=0.04 from the numerical  
comparisons. 

 
3.1 χ2 test 

  Figure 6 shows the residual SSQ in case of p=1 to 
10(σ2=0.04). This shows that the residual SSQ decrease 
with increasing p and does not decrease any further even 
if p≧3. If the measurement data of n sets is yi and the 
computing data by least-square method is ( )ixy ,χ2 is 
given by following equation, 

 
                                 (7) 
 

where σ2 is variance. If a set of {yi} depends on the 
polynomial of p degrees shown eq.(6), χ2 obeys a χ2 
distribution with n-p degrees of freedom. If χ2 is lower 
than χ2

r, which is a critical value for a significance level γ, 
we can estimate that the model function has conformity 
and so this function is allowable. Figure 6 shows the 
result of χ2 test in case of γ=0.05. We can verify that 
model function P(Ψ) is allowable in case of p=2,3‥,10.  

 
3.2 AIC examination 

The value of AIC[7] is given by 
 

nrQSSAIC -+¢º 2             (8) 
 

where SSQ’ is square sum of difference with weight, r is 
rank, n is a number of measurement data.  In AIC, if the 
degree increase, first term is decrease yet second term is 
decrease. Therefore it is expected for AIC to have 
minimum at a certain degree p, and then the polynomial 
of this p degree reflect most sufficient the structure of 
model. 

Figure7 shows result of AIC examination. We 
verified that polynomial eq.(6) in case of p=3 fits most 
statistical for magnetic surface function P(Ψ) eq.(5). In 
this time, we verified to fit most statistical in case of 
using the function of same form for magnetic surface 
function derived. From now on, we verified that the 

 
Fig.5 SSQ of Each Parameter 

(■: σ2=10-4, □: σ2=10-2, ○: σ2=0.04) 

 
Fig.6  Result ofχ2 examination 

 
Fig.4 Example of equilibrium analysis 
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estimation of AIC is effective as the criterion judging 
which the polynomial of degree in the plural polynomial 
reflected most sufficient structure of object. 

4. Parallel calculation of Equilibrium Analysis 
To obtain a converged solution of the N-LSM, a large 

number of equilibrium calculations must be performed. So, 
to improve the computational speed, besides a technique 
using the Green’s functions[2], we examine the application 
of the parallel FEM calculation GeoFEM routine using the 
field partition method. The number of field partition is 1,2 
and 4 and we partition the analysis region along the 
circumference. We assigned one CPU to one partitioned 
field. The solving method for solving the simultaneous 
linear equation in parallel linear solver is CG(Conjugate 
Gradient) method, preconditioning is ILU and decision of 
convergence is 1.0×10-12. Table 1 shows the result in this 
case. Though iterative time is increase by increasing the 
number of field partition, the degree of this change do not 
increase so much. 

In CG method, a computing time increase in 
proportion to 1.3 ～ 1.5th power of the number of nodes. 
So we need to consider the increase of computing time 
for the increase of iterative time and communication cost 
and the decrease of computing time for the decrease of 
the number of nodes. So, it is possible to speed up by 
parallel computing of field partition because iterative 
time doesn’t change so much though the field partition 
increase as shown in Tab.1. We examined the calculation 
cost of CG method in case of not partitioning the analysis 
field and partitioning the analysis field into four in 
iterative method. In this result, we can expect speeding up 
about 2.8 times using 4CPU and find that this calculation 

is effective in the reconstruction code. From this result, 
the speed up ratio is estimated to be 2.8 for 4CPU in spite 
of relatively small number of nodes. So further speed up 
by using this field partition and parallelization for 
parameters in N-LSM can be expected[8]. 
 

5. Conclusion 
We have developed the code to calculate the 

magnetic surface function by the least square method 
from the measurement data for an axi-symmetric 
magnetic confined plasma and get the following result. 

Using χ2 and AIC examination, it is shown that the 
model function P(Ψ) of polynomial form corresponds 
with the test function of polynomial form up to σ2=0.04 

We change the solver using the massive 
simultaneous linear equation in finite element method 
code into solver of GeoFEM which supported the 
communication between fields and estimate the speeding 
up effect of calculation. As a result iterative time of 
iterative method do not increase so much and we confirm 
that it is possible to parallelize by solver of GeoFEM. 
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Table.1 Iteration number of GeoFEM solver 
in each partition (PE is processing element) 

 
Iteration 

number 

The number of nodes 

in one PE 

�ie�d 

�artition � 
70 505 

�ie�d 

�artition � 
75 274 

�ie�d 

�artition � 
81 168 

 
Fig.7 Result of AIC examination 
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