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Statistical characteristics of two-dimensional point vortex systems in positive and negative temperature states
are examined by massive numerical simulations using a special-purpose supercomputer, MDGRAPE-3. Mathe-
matical description of the system is identical to that of a collection of charged rods, i.e., a guiding-center plasma.
The characteristics of the negative temperature state is examined by a numerically obtained density of state, time-
asymptotic equilibrium distributions and energy spectra at various values of temperature. The density of state has
a peak and it is confirmed that the target point vortex system has the negative temperature state. In the negative
temperature case, the equilibrium distribution has a dipolar structure while in the positive temperature case, the
vortices spread uniformly inside the circular boundary. Slope of the energy (k−) spectrum in the intermediate k
region becomes steep as energy increases.
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1. Introduction
Large-scale, long-lived vortices are commonly ob-

served in nearly two-dimensional flow. Onsager intro-
duced a concept of “negative temperature” for the two-
dimensional point vortex system in 1949 to understand the
large-scale vortex formation [1]. The temperature T is sta-
tistically defined by

1
T
=
∂S
∂E
= kB
∂ ln W(E)
∂E

. (1)

In usual cases, the density of state W(E) increases as en-
ergy E increases, and the slope ∂S/∂E never changes the
sign and is always positive. On the other hand, if the to-
tal phase space volume is finite, the total number of states
is limited, and the asymptotic value of the density of state
at infinite energy must be zero. Then the density of state
should have at least a peak at some energy E0 and the tem-
perature is negative at E > E0. Onsager considered the
phase space is identical to the configuration space in the
two-dimensional point vortex system. If the vortices are
confined in a finite area, total configuration space, i.e., total
phase space is also finite. Thus, Onsager concluded that the
negative temperature state appears in the two-dimensional
point vortex system confined in a finite area.

It must be emphasized that the temperature in the
Onsager theory is defined not in the (thermo-) dynamical
sense, but in the statistical sense. There is no negative tem-
perature state in the dynamical sense, although the temper-
atures defined statistically and dynamically coincide with
each other in positive temperature. So we have set up a
target of this research to understand the characteristics of
the negative temperature appearing in the two-dimensional
point vortex system in the dynamical sense.

In this paper, we present our simulation results. In §2,
a target point vortex system is introduced. In §3, we briefly
explain a simulation system. In §4, simulation results of a
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density of state, equilibrium distributions and energy spec-
tra are given. In §5, we summarize our results.

2. Point vortex system
Let us consider a point vortex system consisting of

N/2 positive and N/2 negative point vortices with circu-
lation Γ0 (= Constant) and −Γ0, respectively, bounded by
a circular wall with radius R [2]. Typical value of the to-
tal number of vortices N is 6724. The position vector and
the circulation of the i-th point vortex are given by ri and
Γi, respectively. Constants of motion are Hamiltonian and
inertia:

H = − 1
4π

N�
i

N�
j�i
ΓiΓ j ln |ri − r j|

+
1

4π

N�
i

N�
j
ΓiΓ j ln |ri − r̄ j|

− 1
4π

N�
i

N�
j
ΓiΓ j ln

R
|r j| , (2)

I =

N�
i
Γi|ri|2 (3)

The wall effect is introduced by the image vortices located
at r̄i = R2ri/|ri|2. The last term in Eq. (2) is introduced to
make the value of stream function at the circular wall zero.
Equations of motion for each point vortex are given by

Γi
dxi

dt
=
∂H
∂yi
, Γi

dyi

dt
= −∂H
∂xi
, (4)

or explicitly

dri

dt
= − 1

2π

2N�
j�i
Γ j

(ri − r j) × ẑ
|ri − r j|2

+
1

2π

2N�
j
Γ j

(ri − r̄ j) × ẑ
|ri − r̄ j|2 . (5)
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Right hand side of Eq. (5) is the Biot-Savart integrals.

3. MDGRAPE-3
A difficulty in the point vortex simulations comes

from a calculation cost of the Biot-Savart integral propor-
tional to O(N2). In addition, the cost is twice as large as the
one with no boundary, if the boundary effect is introduced
by the image vortices. There are some solutions for this
problem, for example, using a fast algorithm, using a fast
computer and so on. We have selected a way to use a fast
computer.

Fig. 1 MDGRAPE-3 is a PCI-X add-on card that needs to be
installed on a PC.

In general, to speed up calculations in a central pro-
cessing unit (CPU), it is very efficient to restrict the types
of calculation, i.e., reducing the instruction set, and to
implement the instructions as a wired-logic device com-
pletely [3]. An extreme example is a special-purpose com-
puter that can calculate usually only one kind of calcula-
tion. We have used the special-purpose computer called
MDGRAPE-3 shown in Fig. 1 [4]. It was originally devel-
oped for acceleration of forces with O(N2) calculation cost
needed for molecular dynamics simulations, e.g., Coulomb
force and Van der Waals force. Furthermore, it has an abil-
ity to accelerate calculations of forces expressed as a func-
tion of distances between particles in a system |ri− r j|2. As
we have noticed that the Biot-Savart integral in the two-
dimensional point-vortex system meets the above condi-
tions, we have used MDGRAPE-3 to accelerate the two-
dimensional point-vortex simulations. For N = 8036 vor-
tex case, a calculation time of one time step is 6.01 sec-
ond by a normal PC and 0.068 second by MDGRAPE-3.
Namely, MDGRAPE-3 finishes a simulation within a day,
while it takes 89 days with a normal PC.

4. Simulation results
In this section, we demonstrate the simulation results

for the statistical understanding of the two-dimensional
point vortex system [5].

4.1 Density of state
To confirm an existence of the negative temperature

state in the target point vortex system, a density of state
is obtained by a random sampling of states following the
micro canonical statistics. Each state is classified by the

energy E and the inertia I which are determined by ran-
domly generated distribution of the point vortices. Density
of state consisting of 108 states is shown in Fig. 2.

Fig. 2 Density of state is plotted against system energy E and
inertia I. The peak is located at E0 = 29.1 and I0 = 0.0.

The density of state has a peak at E = 29.1(≡ E0) and
I = 0.0(≡ I0), which gives an evidence for the existence of
the negative temperature state. Namely, the temperature is
negative at E > E0. The ridge extends on I = 0 plane that
is a symmetric plane of the density of state. As the number
of vortices increases, the peak becomes steep one and peak
position approaches E = 0.

4.2 Equilibrium distributions
Equilibrium distributions of the vortices at various

values of temperature are obtained time-asymptotically by
time development simulations. The temperature is con-
trolled by the initial distribution of the vortices that deter-
mines the system energy. The results are shown in Fig. 3.

Fig. 3 Equilibrium distributions of the vortices are shown. The
leftmost distribution corresponds to the positive tempera-
ture case. As the system energy increases, small clumps
are gradually produced and finally reaches a dipolar con-
figuration as is seen in the rightmost distribution. In the
rightmost distribution, the upper and lower clumps ex-
clusively consist of the positive and the negative vortices,
respectively.

In positive temperature, both-sign vortices mix with
each other and spread over the circular area uniformly. On
the other hand, when the sign of the temperature changes
with energy increase, the same-sign vortices tend to form
small clumps. As the energy increases further, each clump
size becomes gradually large and the configuration finally
reaches a dipole one. This statistical tendency of the same
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sign clustering in the negative temperature region is clear
from a description by a canonical energy distribution pro-
portional to exp(−βE) where β is the inverse temperature.
Negative β corresponds to reversing the sign of the interac-
tion, where the same-sign vortices statistically attract and
opposite ones repel [6].

It must be emphasized that the background vortices
enable the clump formation in the energy conserving sys-
tem. To conserve the total system energy constant, the
low-energy background vortices play very important role.
Some vortices release their energy and the others gain the
energy and form the clumps. The energy belonging to the
background vortices is relatively low compared with the
vortices in the clumps. This indicates the common and es-
sential role of background vortices in supporting the con-
densation of two-sign vortices as well as in assisting the
generation of symmetric configuration of the non-neutral
plasma clumps [7–11].

4.3 Energy spectrum
Energy spectrum of the point vortex system bounded

by a circular wall is obtained analytically by [11, 12],

E(k) =
1
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(6)

�� =

�
1 � = 0,
2 � ≥ 1,

(7)

xi = |ri| cos(ϕi), yi = |ri| sin(ϕi). (8)

where J�(x) is the �-th Bessel function of the first kind. The
first and the second terms in Eq. (6) obtained by Novikov
give the spectrum for an unbounded point vortex system,
and the rest represents the effect of the circular boundary.
We have obtained spectra by using the formula (6) for the
time-asymptotic equilibrium distributions at various tem-
peratures. The results for 4 different temperatures (two
positive and two negative) are shown in Fig. 4.

Spectrum range is limited by the radius of the bound-
ary in the small k region and by the minimum distance be-
tween the vortices in the large k region. As is readily seen,
the slope of the intermediate k (from the diameter scale
to the minimum distance scale between the vortices) de-
creases as the energy increases. In Fig. 5, the slope of the
intermediate k is plotted against the system energy.

Fig. 4 Energy spectra are plotted at 4 different temperatures.
The temperature is controlled by the initial configuration
of the vortices. Upper two lines correspond to the nega-
tive temperature (high-energy) case and lower two lines
correspond to the positive temperature case.

Fig. 5 The slope in the intermediate k is plotted against the sys-
tem energy.
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It can be seen that the negative slope gradually de-
creases as the energy increases. There are many data
around slope= −3. It seems that the asymptotic value of
the slope is −3. However, as energy increases, the slope
decreases beyond −3. This observation indicates the slope
in the intermediate k changes with system energy and is
not universal.

In the positive temperature case, the slope should be
−1 as the second, third and fourth terms in Eq. (6) can-
cel each other due to the uniform distribution of the posi-
tive and negative vortices, and only the first term remains.
However, there is a case where the slope is not −1 as shown
in the lowest line in Fig. 4. The difference can be eluci-
dated by a two-body correlation function. The two-body
correlation function is defined by a distribution of the dis-
tances for all combinations and is normalized by the total
number of the combinations of two vortices. The correla-
tion functions are shown in Fig. 6.

(a) 

(b)

Fig. 6 Two-body correlation functions where (a) the slope of the
spectrum is equal to −1 and (b) the slope is unequal to
−1 are plotted. In the inset the region of the distances
between 0.0 and 0.05 is magnified. It is clearly observed
that ”+ ·+” and ”+ ·−” lines do not line up with each other
in (b) while do in (a).

The difference appears in the distribution probability
of negative vortices around positive vortices indicated by
“+ · −” in the plot. In Fig. 6 (a) which corresponds to the
slope = −1 case, the probability of “+ · −” drops to zero
in the limit of zero distance. On the other hand, in Fig. 6
(b) which corresponds to the slope � −1 case, the value
does not drop to zero in the limit of zero distance. As the
distribution probability of the positive vortices around the
positive vortices and that of the negative vortices around

the positive vortices does not match, and the cancellation
of the terms in Eq. (6) is imperfect, the slope is not −1.
This result suggests that there are at least two equilibrium
states as shown in Fig. 7.

Fig. 7 Two equilibrium distributions are illustrated. The signs
+ and × represent the positive and negative vortices, re-
spectively.

5. Discussion
In this paper, statistical characteristics of the two-

dimensional point vortex systems in positive and negative
temperature states has been presented.

On-hand supercomputer, MDGRAPE-3, enables the
massive point vortex simulation. The existence of the neg-
ative temperature state in the target point vortex system
is confirmed by the numerically obtained density of state
that has a peak at E0 = 29.1 and I0 = 0.0. In the nega-
tive temperature, the same-sign vortices cumulate and form
clumps. There is the highest energy configuration where
all the positive vortices condense at a point and all the
negative vortices condense at the other point. There is no
state available larger than the highest energy. In the pos-
itive temperature both sign vortices mix with each other
and spread out the circular wall. It is revealed by the two-
body correlation function that there are at least two differ-
ent equilibrium configurations in the positive temperature.
The configuration corresponding to the slope = −1 case
appears when temperature is high. On the other hand, the
configuration corresponding to the slope � −1 case ap-
pears near zero absolute temperature. So, we can call the
latter case “frozen configuration”. The slope of the spec-
trum in the intermediate k region depends on the system
energy. As energy increases, the negative slope becomes
steep. It may be likely that there is no universal value of
the slope.
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