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Time-Domain Model of a Traveling-Wave Tube
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Beside its extensive use as a powerful wideband amplifier, the traveling-wave tube is a simple and efficient tool
to study one dimensional wave-particle interaction also central in plasma physics. In latter utilization, the
traveling-wave tube plays the part of a plasma without its unwanted instabilities and noise. In both situations,
numerical simulation plays an important part in directing experiments and developing industrial tubes. In this paper,
we propose a new model for the traveling-wave tube interaction. Whereas all previous models based on Pierce's
work use a frequency-domain approach, we propose to treat the interaction in time-domain. By this approach, one
becomes able to observe phenomena that happen at frequencies that are unknown a priori. This approach also
allows taking into account reflected waves without additional effort. This model is based on a reduced model of the
propagating structure coupled with a vlasovian model of a one dimensional electron beam. This paper shows two
time-domain methods to modelize the propagating structure and its interaction with the electron beam.
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model order reduction.

1. Introduction

The traveling-wave tube (TWT) is a device wherein
an electron beam interacts with a longitudinal propagating
electric wave.

Kompfner invented the TWT in 1943 as a microwave
amplifier, and it is still used in spatial telecommunication,
counter-measure and radar domains where robustness,
large bandwidth and high output power are required [1].

Beside its industrial use, the TWT is used as a
simple and efficient tool to study the one dimensional
wave-particle interaction in plasma physics. In this
utilization, the wave-guide plays the part of a plasma
without its instabilities and noise. Non-linear instabilities
and chaos control have been studied in such a device
[2,3].

In both contexts, numerical simulation plays an
essential part in directing experiments, and in industrial
development. Indeed, it allows understanding a particular
situation before its actual realization.

Since the invention of TWT, several models have
been developed and used [4-6]. A common feature of
these models is their frequency approach, i.e. they assume
that only a finite number of frequencies are involved in
the wave-particle interaction. A problem with this
approach is that it assumes one knows a priori the
frequencies that will be involved. But several phenomena
like instabilities may happen at frequencies that are not
simply connected with the pilot frequency, and
consequently require a preliminary work to determine
involved frequencies. A remedy to this problem is a time
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domain approach.

After a brief description of the TWT interaction, we
shall show two time-domain methods to simulate the
interaction that lies in a TWT. To modelize the propagating
structure the first method is based on the use of an
equivalent circuit, and the second one is based on Model
Order Reduction. Both Methods are coupled with a
one-dimensional Vlasov model of the beam. Then some
results are shown.

2. The TWT interaction

In order to achieve strong interaction between
electric wave and electrons, both must propagate at
roughly the same velocity. One uses a slow-wave
structure (SWS) made of a cylindrical metallic tube that
contains a metallic helix as sketched in Fig.1. As the
electric wave travels along the helix, its longitudinal
velocity nears the electrons velocity.

Simulating  this

interaction resolving

by

Fig.1 A cut of the helix slow wave structure. The
metallic helix is maintained in the center of the
waveguide by three ceramics rods.
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electrodynamics equations require solving huge equations
at each time step. Indeed, once discretised, such a system
has typically several millions of degrees of freedom.
Therefore, to simulate the TWT interaction within a
reasonable amount of time one have to develop lighter
models for the propagating structure.

3. The equivalent circuit approach

As seen in Fig.2 each point on the helix is coupled
capacitively with a point on the metallic sheath and two
points that lie on the helix one turn forward and one turn
backward. It is also connected with two neighboring
points on the helix. The lowest level of discretization is to
take two points per helix turn. It gives the equivalent
circuit seen in Fig.3.

As seen in Fig. 4, this simple circuit exhibits a rather
correct dispersion features over a wide frequency band. It
is able to propagate direct and backward waves, and even
to show a band gap.

Fig.2 Construction of the equivalent circuit.
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Fig.3 The simplest equivalent circuit is described by
three parameters. One could add resistances to
describe resistive effects.
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Fig4 Comparison of the dispersion curves of both
actual slow wave structure and equivalent
circuit.

Time evolution of the equivalent circuit is simply
obtained by solving Kirchoff’s equations. If the vector
U contains the capacitance voltages and the inductance
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currents of the circuit, then its evolution is given by a
differential equation in the form:

U=MU ()

when the matrix M contains the coefficients given by
Kirchoff’s equations applied to the equivalent circuit. The
solution of this equation is:

U(t)=

where one uses the exponential of a matrix.

eU0) (2)

Next, this equivalent circuit is coupled with an
electron beam. Since the TWT is essentially longitudinal,
we assume that the electron beam is one-dimensional.
The beam is described by its distribution function
f(x,v), and its evolution is given by the Vlasov’s

equation:
d o) %)
7];+V£+%(ESWS +Esc)a_]; =0 (3)

where ¢ is the electron charge, m is the electron mass,
Esws(x) is the electrical field due to the slow wave
structure and Egc(x) is the space-charge field. The
solution of Vlasov equation is calculated by time-splitting
the Vlasov equation (3) into two advective equations [7],
and then solving successively both equations with the
“Piecewise Parabolic Method” [8]. This method is fast
and conserves positivity and monotonicity of f(x,V)
[9]. The electric field Egys(x) is calculated at each time
step as a function of the voltages of the equivalent circuit;
and FEsc(x) is obtained by solving Poisson’s equation. We
use an analytical solution for a one-dimensional
discretized beam in a metallic cylinder.

While the electron beam is submitted to electric
fields,
induced in the inter-turn capacitances, which are the only
parts of the equivalent circuit that act on the electrons.
Shockley-Ramo’s theorem is used to calculate at each
time step the variation of the voltage of inter-turn
capacitances [10].

The behavior of a TWT involves several phenomena,
and time evolution of each phenomenon is described by
an equation. Hence, the whole time evolution is obtained
by successive resolution of these equations. This
approach is called time splitting or fractional step method
[7]. Simply resolving successively the equations is a first
order time splitting scheme.

We present now two simulations. In both simulations
the electrons are emitted at the left-hand side of the SWS.
In the first case, we inject a continuous beam along with a
harmonic signal, and observe in Fig. 5 the bunching of
the beam. In the second simulation, shown in Fig. 6, we
inject a modulated beam and no signal. We then observe
the growth and saturation of a signal. Computation time
is about 30s on a standard office computer (2GHz, 1GB).

it induces current in the SWS. This current is
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Fig.5 The wave modulates and traps the beam. The
higher graphics represents the electric field in
inter-turn capacitances. In the lower graphics the
distribution function f(x,V) is red when it is

maximum and dark blue when it is null.
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Fig.6 The modulated beam generate and amplifies an
electric wave. The higher graphics represents the
electric field in inter-turn capacitances. In the
lower graphics the distribution function f(x, V)

is red when it is maximum and dark blue when it
is null.
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4. The Model Order Reduction approach
To solve numerically the Maxwell’s equations, one
usually discretizes them over a mesh that describes a

particular electromagnetic structure and obtains a
differential equation in the form:
2
m2YO YOk yn=re) @)
ot ot
where:
e Ut 1is a vector that describes the
electromagnetic field in the structure,
e M is the mass matrix,
e (s the damping matrix,
e K s the stiffness matrix,
e and R(r) is a vector that contains
excitation terms due to charges and

currents.
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This equation is general and do not depend on the
method used to descretize the Maxwell’s equations
(Finite difference, finite elements, etc...).

Next, one could resolve the equation (4) by using,
for example, the Newmark method [11], but the size of
the descetized equation is actually very large and it is not
reasonable to solve it in time-domain.

Thanks to model order reduction methods [12], it
could be possible to integrate huge systems of equations
such as equation (4). These methods aim to replace a
large differential system by a smaller one that preserves
the behavior of the original one.

Applied to a dynamical system in the form:

U() . oU®) 3
e +C.7at + K.U(t)=B.x(?) )

y(O)y=CU()
where x(2) is the input vector, and y(?) is the output vector,
the model order reduction methods construct a projection
basis V' that change the system (5) to a smaller system:

M.

2
.aa”t’g’ )t agt ) ¢ k() = bx(t) ©
y(#)=cu(r)
where :

o u®)=V"Uw),

o m=V"MV,

o c=VCV,

o k=VKV,

e b=V"B,

o =CIV.

Notice that both systems (5) and (6) have the same
input and output vectors x(¢?) and y(z). Indeed, while
reducing the system (5), one demand that its transfer
function:

G(s)=M

x(s)

is preserved, i.e. the transfer function of the reduced
system (6):

)

y(s)
gls)== ©)
around a certain frequency s.
Once (5) has been reduced into (6), time integration could
be much faster.

=G(s) (8)

We can apply this formalism to our electromagnetic
structure because we are interested by the time evolution
of only a little part of the electromagnetic field. In our
case, the input vector x(2) is related to the structure ends
and the region where the electron beam evolves, because
the electromagnetic structure is excited only by its ends
and by the beam. The output vector y(z) is related to the
same region, because one just need to know the
electromagnetic field at the ends of the structure, and the
field that acts on electrons. Hence, an electromagnetic
structure can be viewed as an input/output dynamical
system.
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We are implementing a reduction method found in
[13] to reduce a propagating structure of a TWT wherin
we have discretized Maxwell’s equations by the finite
elements method. The reduction method is based on
Krylov subspaces to construct the projection basis V. As
Krylov subspaces construction is essentially based on
matrix-vector multiplication, it enables to obtain a fast
and parallelized reduction method [14].

Before applying this technique to an actual TWT
system, we have tried it on a fictive two-dimensional
periodic propagating structure shown in Fig.7. This
system has 575 degrees of freedom, and we have
constructed a reduced system that has 44 degrees of
freedom. Then, we have compared the dispersion curves
of the original system and the reduced one. The result is
shown in Fig.8, and one can see that the reduced system,
that is 13 times smaller, propagates waves as the original
one over 4 modes. Computation time needed to reduce
this example was about 0.3s on standard computer (2GHz,
1GB).
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Fig.7 A step of a periodic two-dimensional propagating
structure. Left and right side are the connection
ports, and the remainder is a conducting boundary.
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Comparison of dispersion features of the original
structure (line) and the corresponding reduced
model (points). Discrepancies are visible at the

top of the fourth mode.

Fig.8

5. Conclusion and perspectives
We have proposed two methods to lighten the
time-domain simulation of the traveling-wave tube.
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The first method is based on the use of an equivalent
circuit and showed good qualitative results. To conserve
energy properly, it needs to be enhanced by using
superior order time splitting scheme, and by taking into
account the distribution of the electric field acting on
electrons, i.e. the coupling impedance of the propagating
structure.

The second method is based on the reduction of the
propagating structure viewed as an input/output linear
dynamical system. It showed good results in the case of a
two-dimensional propagating structure, and is still in
implementation for an actual traveling-wave tube
propagation structure.

4. References
[11  A.S.Gilmour, Jr., Principles of Traveling Wave Tubes
(Artech House, 1994).

G. Dimonte and J.H. Malmberg, Destruction of trapping
oscillations, Phy. Fluids, 21, 1188-1206 (1978); S.I
Tsunoda, F. Doveil and J.H. Malmberg, Experimental test
of quasilinear theory, Phys. Fluids, B3, 2747-2757 (1991).

F. Doveil, A. Macor and A. Aissi, Observation of
Hamiltonian chaos and its control in wave-particle
Phys. 49,

(2]

(3]
interaction, Plasma Controlled Fusion,
B125-135 (2007).

L. Brillouin, The Traveling-Wave Tube, Journal of
Applied Physics 20, 1196-1206 (1949).

J.R.Pierce, Traveling-wave
Company (1950).

J.E.Rowe, A Large-Signal Analysis of the Traveling-wave
Amplifier: Theory and General Results, IRE Trans.
Electron Devices, 39-56 (Jan. 1956).

C.Z.Cheng, GKnorr, The Integration of the Vlasov
of

(4]

[5] Van Nostrand

tubes,

(6]

(7]
Equation in  Configuration — Space, Journal
computational physics 22, 330-351 (1976).
Ph.Colella, P.R.Woodward, The piecewise Parabolic
Method for Gas-Dynamical Simulations,
computational physics 54, 174-201 (1984).
T.D.Arber, R.GL.Vann, A Critical Comparison of
Eulerian-Grid-Based  Viasov — Solvers, of
computational physics 180, 339-357 (2002).
M.D.Sirkis, N.Holonyak, Jr., Currents Induced by
Moving Charges, American Journal of Physics 34,
943-946 (1966).
K.J.Bathe, E.L.Wilson, Numerical Methods in Finite
Elements Analysis (Prentice-Hall, Inc., New Jersey, 1976)
A.C.Antoulas, An overview of approximation methods for
Annual Reviews In

(8]

Journal of

Journal

(10]

(11]

[12]
large-scale dynamical systems,
Control 29, 181-190 (2005).
B.Salimbahrami, B.Lohmann, Order reduction of large
scale second-order systems using Krylov subspace
methods, Linear Algebra and its applications 415, 385-405
(2006).

E.J.Grimme, Krylov projection methods for model
reduction, Thesis of the University of Illinois (1997).

[13]





