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This paper studies the non-ideal electron inertial effects on the gravitational instability of a medium
permeated by a magnetic field both in the presence and absence of rotation. It is seen that the inertial
effects become important when considering the transverse perturbations as, in this case, the compres-
sional wave, modified by the electron-inertial terms (inertial compressional wave - ICW), can modify the
Jeans gravitational criterion. A band of wavenumber is introduced around the Jeans wavenumber for
which the ICW is found to have a destabilizing effect. The width of the band depends on the parameter
β, the ratio of sound to Alfvén speed, and the electron inertial length δ. In the case of rotation it is
seen that when the perturbations are transverse to the direction of the magnetic field and the rotational
axis the system is stable for all wave numbers for rotational frequencies greater than a critical value.
Otherwise, the unstable range of wavenumbers introduced by the inertial effects is also modified by the
Coriolis force.
Keywords: Self-gravitating systems, gravitational instability, electron inertia, compressional Alfvén

wave, Hall effect, Jeans instability criterion, Coriolis force.

1. Introduction
The gravitational instability of a plasma media

is important for understanding various astrophysical
problems and since the first stability analysis given by
Jeans [1] there has been great interest in studying the
onset of gravitational instabilities in rotating, magne-
tized or turbulent media [2]. Recently there has been
interest in understanding the transverse gravitational
instabilities of magnetized plasmas, especially to un-
derstand the theory of bi-modal star formation. An
important point to be noted in this case is that the
magnetic field opposes gravitational instability and
the critical Jeans wavelength for the instability is in-

creased by a factor of
�

β
1+β

�−1/2

, where the constant
β is the ratio of thermal over magnetic pressure [3]. In
this paper we argue that for the case where the per-
turbations are perpendicular to the direction of the
magnetic field the situation can arise when the per-
pendicular wavelengths become short in comparison
with the finite Larmor radius or the electron-inertial
length and it becomes important to include the Hall
effects.

The Hall current dynamics of self-gravitating sys-
tems have been studied by many authors [4], but al-
most all of them have neglected electron inertial ef-
fects. The aim of the present paper is to study the
transverse gravitational instability taking account of
electron inertial terms in the generalized Ohm’s Law
[5].

The inclusion of the finite Larmor radius effect, as
any other dissipative effect, is seen to oppose the stabi-
lizing effect of the magnetic field [4, 6]. When electron
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inertia is taken into account however we find that the
Alfvén waves are modified and, in the case of trans-
verse perturbations, we get a wave which, following
the classification [7] for the Alfven Waves in the pres-
ence of non-ideal effects, we call an inertial compres-
sional Alfvén wave. In this paper we essentially dis-
cuss the compressional inertial acoustic-gravitational
mode interaction and show the changes brought in
the Jeans instability criterion both in the absence and
presence of rotation.

2. Basic Equations
Consider a self-gravitating system immersed in a

uniform magnetic field �H rotating with uniform angu-
lar velocity �Ω. The equilibrium density and the pres-
sure are represented, respectively, by ρ0 and p0. Let
ρ1, �v1, p1, U and �h be, in order, the perturbed den-
sity, velocity, pressure, the gravitational potential and
magnetic field. With these definitions the following
linearized basic equations can be set down as govern-
ing the system:

∂ρ1

∂t
+ ρ0 div �v1 = 0, (1)

ρ0

�
∂�v1

∂t
+ 2�Ω× �v1

�
= grad p+ ρ0∇(U)

+
1
4π
[(∇× �h) + �H0], (2)

p1 = S2ρ1, (3)

where S is the sound speed corresponding to the un-
perturbed medium;

∇2U = −4πGρ1, (4)
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div�h = 0, (5)

and

∂�h

∂t
= curl(�v1 × �H0)− c

4πne

×(∇× �h × �H0) +
c2

ω2
pe

∂(∇2�h)
∂t

, (6)

where

ωpe =
�
4πnee

2

me

�1/2

is the electron plasma frequency, with e, me, respec-
tively representing the charge and mass of the electron
and ne the particle density of the electron gas.

Setting the magnetic field and the rotational fre-
quency as �H0 = (Hx, 0, 0) and �Ω = (Ωx,Ωy, 0) we look
for transverse perturbations taking the time and space
dependencies as exp i(ωt+ kz).

3. Dispersion Equations
The dispersion equation for transverse perturba-

tions in the absence of rotation becomes

ω2 =
k2V 2

x

1 + c2k2

ω2
pe

+ S2k2 − 4πGρ0, (7)

where

Vx =
�

H2
x

4πρ0

�1/2

is the Alfvén velocity.
The first term on the r.h.s. of eqn. (7) gives

the compressional Alfvén inertial wave. The group
velocity in the x-direction for this wave is given by

vgx =
�

∂ω

∂k

�
=

�ω

k

� 1
(1 + δ2k2)

, (8)

where δ is the electron inertial length c/ωpe. From
eqn. (8) we may note that the energy is transported in
the transverse direction. For δk > 1 the group veloc-
ity is slower than the phase velocity in the transverse
direction.

It is seen from eqn. (7) that the compressional
inertial wave couples with acoustic and gravity modes.

When k2 >
�

4πGρ0
S2

�
≡ k2

J , the system is stable

and Jeans stability holds well. When k2 < k2
J , the

system can be either stable or unstable for k < kc,
where kc, the critical wavenumber, is given by the
equation:

δ2k4 + k2

�
β + 1

β
− k2

Jδ2

�
− k2

J = 0, (9)

with β =
�

S2

V 2
x

�
.

We note that eqn. (9) has one positive and one
negative root. The positive root k2

c can be easily

checked to be less than k2
J but is greater than k2

JM ,
that is kJM < kc < kJ , where kJM is the wavenumber
in the presence of a magnetic field:

kJM = kJ

�
β + 1

β

�1/2

.

Hence electron inertial terms oppose the stability
introduced by the magnetic field, just as in the case
of other dissipative effects, but not completely, for all
wavenumbers kJM < k < kc the system which was
stable becomes unstable.

An interesting case arises when

kJ =
1
δ

�
β + 1

β

�1/2

.

Then

kc =
�

kJ

δ

�1/2

(10)

is greater than kJ since kJ > 1/δ. Hence the electron
inertia has a destabilizing effect and the system which
is stable for wavenumbers k > kJ becomes unstable
for the range kJ < k <

�
kJ

δ

�1/2
.

4. Effect of Rotation
In the presence of Coriolis Force with the rota-

tional axis along the direction of the magnetic field
the dispersion relation becomes

ω2 =
k2V 2

1 + k2δ2
+ S2k2 − 4πGρ0 + 4Ω2. (11)

We wish to point out, at first, that the coupling of the
Coriolis force and the magnetic field arises only in the
case where the rotational axis lies along the magnetic
field direction as, otherwise, the rotation gets decou-
pled.

From eqn. (11), an important, well-known result
[2], is apparent that when Ω2 > πGρ0 the system re-
mains stable. This shows that when rotational fre-
quency is large it is impossible to break the system
into fragments due to gravitational instability.

We shall now discuss the case when Ω2 < πGρ0.
Here again, for k2 < k2

J , the system is stable, as be-
fore, in the Jeans gravitational sense but the criterion
changes to k2 > (k2

J − k2
Ω) where k2

Ω = 4Ω2

S2 . When
k2 < k2

J , however, the instability recurs for k2 < k2
c ,

the critical wavenumber being given by the equation:

δ2k4 + k2

�
β + 1

β
− (k2

J − k2
Ω)δ

2

�

−(k2
J − k2

Ω) = 0. (12)

On taking (k2
J − k2

Ω) ≡ K2, eqn. (12) is found to
be identical to eqn. (9). Therefore, we find that the
critical wavenumber kc lies between

(k2
J − k2

Ω)
1/2

�
β

β + 1

�1/2

< kc < (k2
J − k2

Ω)
1/2.
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In the case when k2
Jδ2 =

�
β+1

β + k2
Ωδ2

�
instability

is introduced in the region k > kJ , with the critical
wavenumber given by k2

c =
1
δ (k

2
J − k2

Ω)
1/2.

5. Conclusion
It is apparent from this work that the finite elec-

tron inertial effects modify the Alfvén compressional
wave, giving the Inertial Compressional Alfvén mode
(ICW). The interaction of the ICW with acoustic and
gravitational modes shows interesting characteristic
changes in the Jeans gravitational instability both for
non-rotating and rotating systems.
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