
author’s e-mail: nt5r-sgy@asahi-net.or.jp 

Acceleration of Relativistic Electron Beam Trapped                   

in Extraordinary Beat Wave 

Reiji Sugaya and Tsunehiro Maehara 
Department of Physics, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan 

 

Relativistic electron beam acceleration due to the extraordinary beat wave induced by nonlinear electron Landau 
and cyclotron damping of electromagnetic waves is investigated theoretically on the basis of the relativistic 
equations of motion for beam electrons trapped in the beat wave.  The equations of motion in the moving frame of 
reference with the velocity of the electron beam were analyzed analytically and numerically, where the relationship 
between the moving and laboratory frames is given by the Lorentz transformation.  The spatial and temporal 
evolutions of the energy and momentum of the trapped beam electrons in the moving and laboratory frames were 
studied numerically. 
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1. Introduction 

Relativistic electron beam acceleration due to the 
extraordinary beat wave induced by nonlinear electron 
Landau and cyclotron damping of the electromagnetic 
waves in a magnetized plasma is investigated theoretically 
and numerically on the basis of the relativistic equations of 
motion for beam electrons trapped in the beat wave [1-6].  
In order to investigate the highly relativistic electron beam, 
the equations of motion in the moving frame with the 
velocity of the electron beam � �0,0,b bv�v  were 
analyzed numerically, where the relationship between the 
moving and laboratory frames is given by the Lorentz 
transformation [4,6,7].  The beat waves are excited via 
nonlinear electron Landau and cyclotron damping of the 
two electromagnetic waves and trap the beam electrons, 
satisfying the resonance condition in the moving frame, 

cek v m� ���
�� � �� �� � �
��

k
, where 0ce eeB m c� �� ��  is the 

relativistic electron cyclotron frequency for beam electrons 
in the moving frame, � �  is the Lorentz factor in the 
moving frame, and � � ��� �� �� � �� � �

k k k
and �� �� � �� � �k k k  

� �,0,k k��� ���� �  are the wave frequency and wave vector of  
the beat wave in the moving frame, respectively.  It is 
proved that the acceleration rate in the laboratory frame 
increases approximately in proportion to � , where 

� � 1/ 22 21 bv c�
�

� � and c is the light speed. 
The detailed acceleration mechanism for the cases of 
0m � and 1 was clarified by the numerical analysis of the 

spatial and temporal evolutions of the energy and 
momentum of the trapped beam electrons in the moving 
and laboratory frames. 
 

2. Basic Equations 

2.1 Lorentz transformation 

    The Lorentz transformation of the laboratory frame of  
reference � �, , ,x y z t  to the moving frame of reference  
� �, , ,x y z t� � � � is expressed by  

� �, , ,bx x y y z z v t�� � �� � � �  � �2
bt t v z c�� � � ,  

� � , ,bk v k k� � � � �� � �� �
��

kk
and � �2

bk k v c� �� �� �
�

k
,  

where �k and � �,0,k k�� �k  are the wave frequency and 
wave vector in the laboratory frame, respectively, and 
� ��k and � �,0,k k�� �

� ��k  are the wave frequency and wave 
vector in the moving frame, respectively.  The electric and 
magnetic fields of the beat wave in the moving frame are 
also provided by means of the Lorentz transformation and 
are represented as follows [4,6,7]: 
 
    (2) (2) (2) (2)1 b bk v v

E
�

�
� ��� �� ��� ���

�� ��

��� �
��� � � �� �

� �

�
� � �
�

k k kk

k k

E E E k ,    
 
 

(2) (2) (2) (2)
bc

���� �� ����� � � � �� �
�

k k kk
B B B v E .        (1)       
 

Here, (2)
��kE  and (2)

��kB  refer to the laboratory frame, and 
(2)
���
�

k
E  and (2)

���
�

k
B  refer to the moving frame.  It is found 

from the above equations that the magnitude of the 
perpendicular components of the electric and magnetic 
fields in the moving frame increases about �  times that 
in the laboratory frame.  
 
2.2 Equations of motion for the beam electrons   

    The beam electrons trapped in the beat wave are 
governed by the following equation of motion in the 
moving frame [4,6,7]: 
 
    � �(2) (2)

0
e

d ee
dt m c��� ��

�
�� � � � �

� �� �
� �

k k

p
E p B B ,     (2)       
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where � �0 0 0ed dt e m c�� � � �� � �p p B , (2)
0� � �� �p p p ,  

� � � �1/2 1/22 2 2 2 21 1ep m c v c�
�

� � �� � � � , and  
� �0 00,0, B�B .  Thus, Eq. (2) becomes 

 
    

(2)
(2) (2) (2)

0 0
e e

d e ee
dt m c m c� ��� ��

�
� �� � � � � �

� � �� �
� �

k k

p
E p B p B , 

                                        (3) 
 
where the higher order term � � (2) (2)

ee m c� ��
� �� � �

�
k

p B  is 
neglected.  As was proved previously, this equation shows 
that the trapped beam electrons are accelerated and 
decelerated by the parallel electric field of the beat wave 
for the case of 0m � (nonlinear electron Landau damping 
due to the first term of Eq. (3)) and by the Lorentz force 
arising from the perpendicular magnetic field of the beat 
wave for the case of 1m � (nonlinear electron cyclotron 
damping due to the second term of Eq. (3)) [4,6]. 
 

3. Numerical Analysis     

We performed the numerical analysis of Eq. (3) for 
the cases of 0m � and 1, and the spatial and temporal 
evolutions of the energy and momentum of the trapped 
beam electrons in the moving and laboratory frames were 
studied.  The spatial and temporal evolutions for 

0m � are calculated by retaining the first and third terms 
in the right hand of Eq. (3) and shown in Figs. 1-4.   
Those for 1m � are calculated by retaining the second and 
third terms in the right hand of Eq. (3) and shown in Figs. 
5-8.  The spatial evolutions along the magnetic field 
( axis)z� � are obtained from the relation of  

� �(2) (2) (2)
2 e zd dz m p d dt� �� � � � � ��p p .  Here, 1000� � , 

/ 0.1v c� �� , and 0 0.1cek c ��� ��
� .  For the six curves in 

each figure, the value of 2
eeE k m c��

��
k� �
��  is given as a 

parameter.  For simplicity, it is assumed that 
(2) (2)i iE E B�� �� ��� �

k k k� � �
� � � , , ,i x y z� � �� . The absolute values of 

the energy and momentum of the trapped beam electrons 
increase with 2

eeE k m c��
��

k� �
��  in each figure.  The trapping 

frequency for the beam electrons in the moving frame is 
defined such that 

1/2

B eeE k m� ��
� ���

k� �
�� . 

Figures 1 and 2 show the spatial and temporal 
evolutions in the moving frame, where 

0m � , *g � �� , * (2)Px x ep m c��� , * (2)Py y ep m c��� , 
* (2)Pz z ep m c��� , 2z z v t� � � �� � � , * * *

2/ a / az z�� , 
*a 0.05k �� ��

� , *
maxT k ct ��� � �� �

� , 2
eeE k m c��

��
k� �
�� =400, 800, 

1200, 1600, 2000, 2400, max maxk ct� � �� �� ��
� 0.213, 0.188, 

0.178, 0.173, 0.17, 0.168, and 0B ce� �� � 2, 2.83, 3.46, 4, 
4.47, 4.9 ( 0 0 /ce eeB m c� � ).  Here, max� �  decreases and 

0B ce� �� increases with 2
eeE k m c��

��
k� �
�� .  The initial values 

at 0t� � are *
2 ak z k�� � ��� �� �

� � , * *P P 0x y� �  and *P 0.1z � .  
The effective trapping frequency in the moving frame 
should be given by max maxT t k c� � � �� � �� �� � �

� , and  

 

0T ce� �� � 1.47~1.87.  This value is rather smaller than 

0B ce� �� .  Figures 3 and 4 show the spatial and temporal 
evolutions in the laboratory frame, where / /g b � �� , 

(2)Px x ep m c� , (2)Py y ep m c� , (2)Pz z eb p m c�� , 

� � � �1/2 1/22 2 2 2 21 1ep m c v c�
�

� � � � .  The quantities  
in the laboratory frame are expressed as 

� �2
b z ev p m c� � � ���� � �� � � , (2) (2)

x xp p ��� , (2) (2)
y yp p ��� ,  

(2) (2)
z zp p� ��� , � �2 2 2 /b z ez z v t z t p m z� � ��� � � � �� � � � � ,  

� �� � � �1/2 1/ 22 2
21 1 1z et p m c t z c� � � �� �

�
� �� � � �� � � � �� �� �

 

t� �� , /B B� � ��� , T T� � ��� , 0m � , 2/ a / az z� ,  

 
Fig.1 Spatial evolutions of the energy and momentum

of the trapped beam electrons in the moving 
frame for 0m � are shown. 

 
Fig.2 Temporal evolutions of the energy and 

momentum of the trapped beam electrons in 
the moving frame for 0m � are shown. 
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maxak ��� ��
� , maxT k ct ���� �

� , 4
max 1.732 10� �� � ,

41.703 10�� , 41.665 10�� , 41.634 10�� , 41.61 10�� ,
41.59 10�� , and 3

max max 0.386 10k ct� ��� � ��
� , 

30.358 10�    30.345 10� ,  30.336 10� , 30.331 10� ,  
30.327 10� .  Here, max�  and max�  correspond to the 

acceleration length and the acceleration time in the 
laboratory frame, respectively, and decrease with 

2
eeE k m c��

��
k� �
�� .  It is noted that the obtained results depend 

hardly on the value of �  except for the values of 
� �max 1� �� and � �max� ��  .  For 0m � , it is found 

that the energy and momentum of the trapped beam 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
electrons increase and decrease during the half period of 
one bounce. The increase and decrease of ,� �� , (2)

zp ��  
and (2)

zp  mean the acceleration and deceleration of the 
relativistic electron beam.  The increase and decrease of 

(2)
xp �� , (2)

yp �� , (2)
xp  and (2)

yp  mean the variation of the 
perpendicular energy and momentum of the relativistic 
electron beam. 

Figures 5 and 6 show the spatial and temporal 
evolutions in the moving frame, where 1m � , 

*a 0.05k �� ��
� , 2

eeE k m c��
��

k� �
�� =1000, 2000, 3000, 4000, 

5000, 6000, max 0.14� � � , 0.132, 0.129, 0.128, 0.127,  

 
Fig.3 Spatial evolutions of the energy and momentum 

of the trapped beam electrons in the laboratory 
frame for 0m � are shown. 

 
Fig.4 Temporal evolutions of the energy and  

momentum of the trapped beam electrons in the 
laboratory frame for 0m � are shown.

 
Fig.5 Spatial evolutions of the energy and momentum 

of the trapped beam electrons in the moving 
frame for 1m � are shown. 

 
Fig.6 Temporal evolutions of the energy and 

momentum of the trapped beam electrons in 
the moving frame for 1m � are shown. 
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0.127, and 0 3.16B ce� �� � , 4.47, 5.48, 6.32, 7.07, 7.75.  

Similarly, max� �  decreases with 2
eeE k m c��

��
k� �
�� .  The 

initial values at 0t� � are *
2 ak z k�� � ��� �� �

� � and  
* * *P P P 0.1x y z� � � .  The effective trapping frequency in 

the moving frame becomes 0T ce� �� � 2.24~2.47, which is 
also smaller than 0B ce� �� .  Figures 7 and 8 show the 
spatial and temporal evolutions in the laboratory frame, 
where 1m � , 4

max 1.509 10� �� � ,  41.461 10�� , 
41.444 10�� , 41.435 10�� , 41.43 10�� , 41.427 10�� and 

3
max 0.291 10� � � , 30.278 10� , 30.274 10� , 30.272 10� , 

30.27 10� , 30.27 10� .  Here, max�  and max�  decrease 
also with 2

eeE k m c��
��

k� �
�� .  It is also noted that the obtained 

results depend hardly on �  except for the values of 
� �max 1� �� and � �max� �� .  For 1m � , it is found 

that the energy and momentum of the trapped beam 
electrons increase monotonically during the half period of 
one bounce.    The monotonic increase of ,� � � , (2)

zp ��  
and (2)

zp  means the acceleration of the relativistic 
electron beam.  The increase of the absolute values of 

(2)
xp �� , (2)

yp �� , (2)
xp  and (2)

yp  means the increase of the 
perpendicular energy and momentum of the relativistic 
electron beam. 
    We consider the actual system where the relativistic 
electron beam is injected axially into the magnetized 
plasma and the intense laser beam is launched.  The 
acceleration quantities in the laboratory frame are deduced 
on the basis of the numerical results for the condition of 

0 10TB � , 2 400eh eE k m c��
��� �

k� �
�� , 1000� � and 

2 510MeVem c� � .  It is assumed that the change of the 
initial phase *

2 a 0.05k z k�� � ��� � � �� �
� � 0.05�� �  leads to 

the changes of /h h �� , max max� ���  and 

max max� ��� .  For 0m � , max 400� �  and 
4

max 1.7 10� ���  are obtained.  Under the condition of 
20� � and 3

0 10cek c � ��� ��
� , the acceleration time 

max /at k c�� ��� �
�  ( maxT ak ct ���� �

� =1), acceleration 
length maxaz k�� ��� �

�  ( 2/ a / az z� �  maxak z ����� =1), 
the energy gain � �2

a eW m c�� � , the acceleration gradient 
� �2

a e ag m c z�� � , and the electric field of the laser 
Ek are estimated: 4.5 sat �� , 45.7 10 maz �� � , 

23 1.5GeVa eW m c� �� , 2.7TeV/ mag � , and 
96.1 10 V/ mE � �k .  Here, the magnitude of the electric 

field of the beat wave is assumed to be 
2 210eE h k m c e E� �

��
��� �� �
��

kk
.  For 1m � , 

max 320� �  and 4
max 1.6 10� ���  are obtained.  Under 

the condition of 20� � and 0 1cek c ��� ��
� , the estimated 

values of 3.6nsat � , 75.4 10 maz �� � , 
23 1.5GeVa eW m c� �� , 2.8PeV/ mag � , and 

96 10 V/ mE � �k  are obtained.  Here, the magnitude of 
the electric field of the beat wave is assumed to be 

2 210eE h k m c e E� ��
��

��� �� �
��

kk
, ( E E� ���� kk�

� � , 
210E E�

��k k� ).  It is found that the acceleration rate for 
1m � is considerably large compared with that for 0m � .  

This is owing to the acceleration mechanism in which the 
beat wave acceleration for 1m � results from the Lorentz 
force due to the perpendicular components of the magnetic 
field of the beat wave whose magnitude in the moving 
frame increases about � times that in the laboratory frame.  
This is consistent with the previously obtained results 
[4,6].  
 

 
Fig.7 Spatial evolutions of the energy and momentum 

of the trapped beam electrons in the laboratory 
frame for 1m � are shown. 

 
Fig.8 Temporal evolutions of the energy and 

momentum of the trapped beam electrons in the 
laboratory frame for 1m � are shown. 
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4. Conclusion 
    It is verified theoretically and numerically from the 
relativistic equation of motion for the trapped beam 
electrons that the highly relativistic electron beam can be 
accelerated by the extraordinary beat wave induced via the 
nonlinear electron Landau and cyclotron damping of the 
intense electromagnetic waves.  The beat wave 
acceleration induced by the nonlinear scattering by the 
extremely high-power laser injected into the magnetized 
plasma may be available usefully for the highly relativistic 
electron beam accelerator [8].  
    The authors wish to thank Professor Y. Kitagawa for 
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the Computation Center of Nagoya University.  
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