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The parallel electric field Ej and its integral along the magnetic field F' (= — [ Ejds) in nonlinear
magnetosonic waves are studied with theory and fully kinetic, electromagnetic, particle simulations.

The magnitudes of F|| and F' in small-amplitude pulses are analytically obtained for warm plasmas and

for cold plasmas. Furthermore, it is found that the simulation values of F' in large-amplitude waves

(shock waves) are explained by a simple phenomenological relation. The parallel electric field becomes

weak and nonstationary as the positron density increases. This is also studied with simulations.
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1. Introduction

It has been demonstrated with relativistic electro-
magnetic, particle simulations that positrons can be
accelerated to ultrarelativistic energies v ~ 2000 by
an oblique magnetosonic shock wave in an electron-
positron-ion (e-p-i) plasma [1-3]. In this acceleration
mechanism, the time rate of change of v is propor-
tional to the electric field E) parallel to the magnetic
field [1,2]. It is thus important to find the magni-
tude of Fj to quantitatively understand this accel-
eration mechanism. In addition, it was shown with
particle simulations that the positron acceleration is
weak when the positron density n, is high [1,2]. This
may also be explained if we know the dependence of
E) on ny.

Recently, a theory was developed on Ej in non-
linear magnetosonic waves in an electron-ion plasma,
and its predictions were verified with simulations [4].
In this paper, we extend this work to e-p-i plasmas.
Furthermore, we investigate the nonstationarity of £
with simulations.

In Sec. 2, we analyze small-but-finite ampli-
tude, magnetosonic waves with the three-fluid model
to find that the integral of £ along the magnetic field,
F=- fEHds, which we call the parallel pseudo po-
tential, is proportional to the difference of electron
and positron pressures, peo — Ppo, in a warm plasma
while it is proportional to the magnetic pressure in a
cold plasma [5]. Moreover, the theory indicates that
F decreases with an increasing npo.

In Sec. 3, we investigate the nonstationarity of the
parallel electric field in large-amplitude magnetosonic
shock waves by means of one-dimensional electromag-
netic, particle simulations. The simulations show that
the parallel pseudo potential F' becomes dependent on

author’s e-mail: takahashi.seiichi@a.mbox.nagoya-u.ac.jp

238

time more strongly as n,g increases.

In Sec. 4, we summarize our work. These results
that F' becomes smaller and more time-dependent
with increasing n,o explain the previous simulation
result that the acceleration is weak when nyg is high.

2. Dependence of Parallel Electric Field
on Positron Density

We analytically obtain E and F' in small-but-
finite amplitude (¢ < 1) nonlinear magnetosonic waves
propagating in the = direction in an external magnetic
field By = Bp(cosf,0,sinf) in a three-component
plasma. Applying the reductive perturbation method
[6] to the three-fluid model with finite temperatures,
we obtain the Korteweg-de Vries (KdV) equation [5].
In this perturbation scheme, the lowest-order, parallel
electric field £ and parallel pseudo potential F' are
given [5] as
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where the subscripts e, p, and i refer to the electrons,
positrons, and ions, respectively, I'; (j = e,p, or i)
denotes the specific heat ratio, njo is the equilibrium
density, pj;o is the equilibrium thermal pressure, m; is
the mass, Z is the ionic charge state (the ion charge is
q; = Ze with e the elementary electric charge), £ is the
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stretched coordinate corresponding to the space coor-
dinate z [5,6], B,; is the perturbed magnetic field in
the z-direction, wy; is the plasma frequency, and wg is
defined as wy = 3_ wy;. We have used the subscript T
to indicate that £ and F' are determined by temper-
atures. If we ignore the ion terms with ~ O(me/m;)
in Egs. (1) and (2), the parallel electric field E}p and
parallel pseudo potential Fr are proportional to the
difference of electron and positron pressures, peo —ppo-
Both Fjr and Fr become small when Npo/Neo is high.

In the cold plasma limit (7; = 0), the parallel
electric field (1) and parallel pseudo potential (2) both
vanish. In this limit, we carry out higher order calcu-
lations to obtain [5]
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where ¢; is the electric charge, —¢. = g, = ¢;/Z = e,

and v, is defined with use of the light speed ¢ and the
Alfvén speed vy as

Iy =

Y — - ®)
VA= 1+0v3/c®

In this cold plasma limit, F) and F' are proportional
to the magnetic pressure, B3 /87 (if v < ¢?). Thus,
the subscript B is used for E} and F' in Egs. (3) and
(4).

The dispersion relation of the magnetosonic wave
can be written as w/k = vmpo(1 + pk?), where vypo is
the phase velocity in the long-wavelength limit and
is the dispersion coefficient. As shown in the top panel
of Fig. 1, the critical angle 6., at which p becomes
zero, decreases with increasing n,g/neo. It indicates
that if the propagation angle is § = 89°, 8 > 6, and
1 does not become zero at any value of npo/neo. If
6 = 85°, however, ;1 becomes zero at npg/neo =~ 0.8.

As shown in the middle panel of Fig. 1, if § =
89°, the magnitude of Fg in a solitary wave decreases
with increasing npo/neo. If 6 = 85°, Fp diverges at
Npo/Neo = 0.8 at which p = 0. Except for the vicinity
of the point of y = 0, Fg decreases with n,0/neo.

The above theory is for small-amplitude pulses.
Concerning the large-amplitude [e ~ O(1)] waves
(shock waves), it has been found that the following
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Fig. 1 Critical angle 6. (top panel) and peak values of Fg
of solitary waves (middle and bottom panels) as
functions of npo/neo. The middle and bottom pan-
els show the cases of # = 89° and of 8 = 85°, re-
spectively. Here, we have assumed that the ratio of
the electron gyrofrequency to plasma frequency is
120 fepe = 1.

phenomenological expression for F',
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fits to the observed values of F' in shock simulations in
both warm and cold plasmas [5]. The magnitude of F’
given by Eq. (6) also becomes small as n, increases.
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Fig. 2 Profiles of B, ¢, and F'in a shock wave. The profile
of F rapidly varies with time.

3. Nonstationarity of Parallel Electric

Field
3.1 Simulation model and parameters

As nyo/neo rises, the nonstationarity of F is en-
hanced, as well as the magnitude of F' decreases. In
this section, we investigate the nonstationarity of F
with one-dimensional (one space coordinate and three
velocities), relativistic, electromagnetic particle simu-
lations with full particle dynamics, by observing mag-
netosonic shock waves propagating in the z direction
in an external magnetic field By = By(cos#,0,sin ).
For the method of particle simulations of shock waves,
see Refs. [7-9].

The simulation parameters are as follows: The to-
tal system length is L = 16384A 4, where A is the grid
spacing; the number of electrons is 6.1 x 10°; the ion-
to-electron mass ratio is m; /m. = 400 with m, = m.;
the propagation angle is # = 60°; and the ratio of elec-
tron gyrofrequency to plasma frequency is |Qe|/wpe =
1.0. The light speed is ¢/(wpeAy) = 10. The temper-
atures are the same, T, = T}, = T;, and the thermal
velocities are vre /(wpeAg) = v7p/(WpeAg) = 0.26 and
vri/(wpeldg) = 0.013.

3.2 Simulation result

Figure 2 shows the profiles of B,, electric poten-
tial ¢, and F' at three different times of a shock wave.
The profile of F' depends on time more strongly than
those of B, and ¢ do. To study the nonstationar-
ity of F more quantitatively, we examine the time
variation of Fiax(t), where Fiax(t) is the maximum
value of F(z,t) at a time t. Figure 3 shows Fiax(t),
which is normalized to its time average (Fax(t)), for
low and high n,o cases; ie., for nyo/ne = 0.1 and
Npo/Neo = 0.6. The amplitude of Fiax(t)/{Fmax(t)) is
much larger in the high ny,g case than in the low nyg
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Fig. 3 Time variations of Finax(t)/(Fmax)-
case.

Figure 4 shows the spectra of Fiax(t) (upper
panel) and ¢max(t) (lower panel) for nyo/neo =
0.1 and 0.6. The Fourier amplitudes ﬁ'nlax(w) for
npo/Neo = 0.6 are greater than those for ny/ne = 0.1
for most of the frequencies. It is interesting to note
that there is a hump near w/wp. = 1 (wp is the plasma
frequency of the electrons in the upstream region) for
npo/Meo = 0.1 and this hump is enhanced in the re-
gion 1 < w/wpe < 3 for nyo/neo = 0.6. The ampli-
tude (ﬁmax(w) is small and does not change much for
w/wpe 2 0.1. For w/wpe < 0.1, it is slightly enhanced
in the high ny case.

In Fig. 5 we plot the relative standard deviations
of Finax(t) and ¢max(t),
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Fig. 4 Fourier amplitudes of Fimax(t) and ¢max(t).
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Fig. 5 Relative standard deviations of Fnax(t) and
Pmax(t).
as functions of the positron density npyo/nep. The

closed circles and open triangles, respectively, repre-
sent ((§Fmax)?) and ((§¢max)?). The dependence of
the relative standard deviation of ¢ on the positron
density is rather weak, while that of F' significantly
rises as myo/Neo increases, indicating that the nonsta-
tionarity of F' is enhanced when nyo/neo is large.
Figure 6 shows the contour maps of | E)(k,w)| and
of |E,(k,w)| for the shock wave when nyo/ne = 0.1.
We find that the values of |E)(k,w)| and |E, (k,w)| are
large near the dispersion curve of the magnetosonic
In addition, |E)(k,w)| is fairly large in the
high-frequency regime 1 S w/wpe < 3 in the long-
wavelength region ck/wp. S 2. We do not find large
|E;(k,w)|, however, in the high frequency regime.
4, where (/A)max(w) is
2> 1 while Fmax(w) has a peak near

~

wave.

This is consistent with Fig.
small for w/wp.
w/wpe = 1. We then see that the transverse electric
fields in the high-frequency waves with w 2 wy. [10]
affect the nonstationarity of F'. Figure 4 indicates that
their effect is more significant where nyo/neo is large.

4. Summary

We have studied the parallel electric field in non-
linear magnetosonic waves in e-p-i plasmas with the-
ory and particle simulations. The theory based on the
three-fluid model indicates that the parallel pseudo
potential F' (= — [ E)ds) in small-amplitude waves
with € < 1 is proportional to the difference of electron
and positron pressures, p.o — Ppo, in warm plasmas
and to magnetic pressure, B3/8m, in cold plasmas.
Furthermore, the theory shows that F' becomes small
with increasing positron density n,g except for the

241

i 0.00035
e ] 0.0003
e ] 0.00025
= === ] 0.0002
0.00015
0.0001
5e-005
E 0

|E||(k, (0)|
By

@ /e,

0.1

0.01 f 1

O /@

0.1

|E (k,w)l
By

0.1 1
kc/ oy,

Fig. 6 Contour maps of |E(k,w)| and |E.(k,w)| in shock
wave.

vicinity of the point at which the dispersion coeffi-
cient p becomes zero; F' becomes zero at n,0/neo = 1.
Simulations show that as myo/neo rises, the nonsta-
tionarity of F' is enhanced, as well as the magnitude
of F' decreases. These results are consistent with the
simulation result [1,2] that the positron acceleration
becomes weak as n,o increases. The simulation val-
ues of F' in large-amplitude waves (shock waves) are
explained by a phenomenological relation (6) for both
warm and cold plasmas.
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