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In the upstream regions of the interplanetary and astrophysical shocks, quasicoherent Alfvén waves

are excited by the reflected ions or cosmic ray streaming. The energy ratio between inward and outward

propagating Alfvén waves are considerable for the diffusive shock acceleration (DSA) to operate, since

it affects the heating and transportation of the charged particles. Lucek and Bell claimed that in a

presence of energetic plasma beam (streaming cosmic rays), wave magnetic perturbations are drastically

amplified, and these magnetic perturbations can enhance the acceleration efficiency of galactic cosmic

rays. On the other hand, the recent progress of the analytical and numerical models on electromagnetic

ionbeam instability (mode instability) declares that the mode instability can be stabilied by the

presence of finite amplitude Alfvén waves. While such new knowledge on ionbeam instability should

be considerable for the DSA process, physical processes have not been discussed in detail yet. In the

present short paper, we demonstrate that the dependence of the ionbeam instabilities on the amplitude

of the lefthand polaried Alfvén waves. urther, we report on a new instability, which seems to be

different from the instabilities reported in the past works. Other issues on ion beam instability are also

discussed in the last section.
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 
The physics of beamplasma interactions is an im

portant topic in space plasma physics[1, 2, 3]. In the

upstream regions of the interplanetary and astrophysi

cal shocks, quasicoherent Alfvén waves are excited by

the reflected ions or cosmic ray streaming. The energy

ratio between inward and outward propagating Alfvén

waves are considerable for the diffusive shock acceler

ation (DSA) to operate[4], since it affects the heat

ing and transportation of the charged particles[5, 6].

Lucek and Bell[7] claimed that in the presence of en

ergetic plasma beam components (streaming cosmic

rays), wave magnetic perturbations are drastically am

plified, and that the amplified magnetic perturbations

can enhance the acceleration efficiency of galactic cos

mic rays.

On the other hand, it is recently found that the

electromagnetic ion beam instability (the mode

or resonant instability[8, 9, 10, 11, 12]) could be sta

bilied or strongly decrease in the presence of large

amplitude Alfvén waves[13, 14]. Gomberoff[13] and

his colleagues[15, 16, 17, 18, 19, 20] addressed the

protonproton instability in the presence of the finite

amplitude Alfvén waves using the analytical model,

which was the modified model of the dispersion rela

tion on parametric instabilities of Alfvén waves in a

plasma composed of massless electrons, protons, and

alpha particles[21].

In the present short paper, we demonstrate the

dependence of the ion beam instability on the wave

  

amplitude, which has not clearly been shown in the

past studies. We also discuss a new instability and

the ion Landau damping effects. In section 2, the

analytical models discussed in the present paper are

briefly discussed. In section 3, we numerically discuss

the growth rates of electromagnetic ion beam instabil

ities. The results and the future issues are discussed

in section 4.

  
In the present short paper, we discuss the electro

magnetic ion beam instability in the presence of the

monochromatic finite amplitude Alfvén waves. By as

suming the chargeneutrality, the fluid description for

each plasma species (core protons, beam protons, and

massless electrons) satisfies the fluid equation, and the

spatial dependence and the background magnetic field

are only in the longitudinal (x) direction, we obtain

the dispersion relations as follows[13, 15, 17]:

LL−D + LR−B− + LR−B−

+L−RB + L−RB

+(B−B −B−B)
(R−R −R−R)/D = 0, (1)

where

L± = y± −
x±
ψ±

−
ηx±
ψ±

R± =
y±
2ψ


x −

yx
yx

+
x±
ψ±


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R± =
ηy±
2ψ


x −

yx
yx

+
x±
ψ±



D = β′∆ηrx
 + β′∆rx


 −∆∆(xx)



B = −β′Bηrxx +Bx
(β′ηr −∆x


)

B = −β′Brxx +Bx

(β

′
r −∆x)

B− = −β′B−ηrxx +B−x
(β′ηr −∆x


)

B− = −β′B−rxx +B−x

(β

′
r −∆x)

B = −A
ψ−(yψx


 − yψx


)

yyx

B− = −A
ψ(y−ψ−x


 − yψx


−)

yy−x

∆ = A+ r


1− β

y

x



∆ = A+ r


1− β

y

x



x = x − yU
x± = x± − y±U

A =


B

B



r = ψψψ−

ψ = 1− x
ψ± = 1− x±

x± = x ± x

y± = y ± y

β′ =
βy



(1 + η)

β =
4πnγKT

B
(l = e, c, b)

and y = kV/ is the normalized wave num

ber, x = ω/ is the normalized frequency, V =

B/

4πnm,  = eB/mc, U = V/V, V

is the bulk speed of the beam protons, η = n/n,

B is the amplitude of the parent Alfvén wave, K

is the Boltzmann constant, c is the speed of light, e

and m are the proton charge and the proton mass, T
and n are the temperature and the number density of

background plasmas (where l = e, c, b indicate mass

less electrons, core protons, and beam protons, respec

tively), γ (l = e, c, b) is the ratio of the specific heats,

and 0 and ± in subscripts indicate that the variables

relate to the parent wave and the sideband waves, re

spectively. Eq.(1) is for the reference in which the

protons have no zerothorder drift (V = 0). The

currentfree condition for the longitudinal component

is satisfied from the charge neutrality. The normalized

frequency and the wave number of the parent Alfvén

wave (x and y) satisfy the linear dispersion relation

L = y −
x
ψ
−
ηx
ψ

= 0. (2)

We here briefly remark on Eq.(1). First, in Eq.(1),

       
    η  .  U  .

the frequency of the parent Alfvén waves (x) is

treated as the real constant[21]. Thus, the modes

unstable to the ionbeam instability should be irrel

evant to the parent Alfvén waves, while some past

studies considered the unstable modes as the parent

waves[15, 17]. Second, the definition of β in Eq.(1) is

different from the one used in general (=thermal pres

sure/background magnetic pressure). In some past

studies[13, 15, 17], the conditions β = β = β,

which also indicate that γT = γT = γT, is

used. In the present paper, we consider the case

γ = 1 and γ = γ = 3 in the fluid systems[22].

Namely, the conditions β = β = β indicate that

T = T = γT/γ = T/3. We also remark that

Eq.(1) is different from the dispersion relation in some

previous works, which discussed the electron  proton

 heavy ion plasmas[21, 23, 24].

To discuss the ion Landau damping effects of ion

acoustic waves, we introduce a kinetic expression for

γ and γ as a function of ξ, where ξ = x/yV,

ξ = x/yV, and V =

2KT/m (l = c, b), in

the form[24, 25, 26]

γ = 2


ξ −

1

Z ′


, (3)

where Z′ = −2(1 + ξZ(ξ)), and Z(ξ) is the

plasma dispersion function. While the some past
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         
  y  . x  .    
A

studies[20, 27] introduce the damping effect through

a collisionlike term in the longitudinal component of

the fluid equations of motion, numerical results us

ing the model using a collisionlike term do not agree

with those using the exact Landau damping formula

tion (Eq.(3))[26]. Thus, we use Eq.(3) to discuss the

ion Landau damping effects in the present study.

  
We numerically solve Eq.(1) with γ = γ = 3,

β = 0.01, η = 0.2, U = 2.0, y = 0.27, and x > 0

(the forward propagating lefthand polarized waves).

Fig. 1 shows the numerical solutions of Eq.(2). We

first discuss the case that a normal lefthand polarized

mode (x = 0.211) is given. As shown in Fig. 1(a) and

(b), the mode instability is observed in this set of

parameters with A = 0. n the other hand, the max

imum growth rates of this instability decrease with

increasing A, and finally this instability is completely

stabilized at a certain value A ∼ 0.16 (Fig. 2)[13].

When A is relatively small, the relation between A

and the maximum values of Im(x) is almost linear,

while when A is close to A, Im(x) rapidly decreases.

Next we discuss the beam mode (x = 1.5)

(Fig. 1(a)), which is the same parameters in

Gomberoff and Hoyos[18]. Fig. 3(a) and (b) are re

production of Fig.2(a)(b) and Fig.3 in Gomberoff and

Hoyos[18], respectively. As seen in Fig. 3(b), the sta

bilization of the mode instability occur at much

smaller value of A than the previous case. However,

the excitation of a new instability (Fig. 4), which are

not distinctly mentioned in Gomberoff and Hoyos[18]

along with the stabilization of the mode instabil

ity. The stabilization point of the mode insta

bility (Fig. 3(b)) and the destabilization point of a

new instability (Fig. 4) are surrounded by a circle in

Fig. 3(a). It is also observed in Fig.2(a) of Gomberoff

and Hoyos[18]. We remark that a new instability as

sociates with the ion acoustic waves supported by the

beam protons, while the mode instability only asso

ciate with the transverse wave modes. Thus, it seems

to be different from the instabilities reported in the

      A    
 A  .  −    
       A
      

past works[20, 23].

Finally, we discuss the kinetic model (Eq.(1) with

Eq.(3)). As shown in Fig. 4, while the exact Landau

damping formulation is used, the growth rate of the

mode instability in the kinetic model is almost same

as one in the fluid model, and the growth rate of a new

instability is not so much affected by the ion Landou

damping effect.

   
In the present short paper, we have discussed the

stabilization of the electromagnetic ion beam insta

bility by finite amplitude lefthand polarized Alfvén

waves. We have confirmed the responsibility of some

results in the past studies, and demonstrated that the

dependence of the growth rate of the ionbeam in

stabilities on the amplitude of the lefthand polarized

Alfvén waves. Further, we have reported on a new

instability, which seems to be different from the insta

bilities reported in the past works.

The recent study also declares that in the nonlin

ear stage of the ionbeam instabilities, parallel and

quasiparallel propagating waves convert their en

ergy into quasiperpendicular waves through wave

wave interactions (nonlinearlydriven filamentation

219

Y. Nariyuki, Stabilization of Electromagnetic Ion Beam Instabilities by Finite Amplitude Alfvén Waves Revisited



          
  A  . −    
    γ  γ    
   

instability)[12]. We remark that it is important for

the A process, since the uasi parallel propagat

ing waves, which are considered as the “scatterer” of

the A process, are possibly dissipated, and uasi

perpendicular wave modes are excited. However, only

a few numerical studies discussed the nonlinear evo

lution of the ionbeam instability in the presence of

finite amplitude Alfvén waves[14, 28].

The past studies also reported the other new in

stabilities such as parametric instabilities and electro

static instabilities[21, 20, 23]. However, to our knowl

edge, numerical simulations on these instabilities have

also not been carried out yet. Recently, Araneda 

[30] discussed the generation of the proton beam

components by the modulational instability of the left

hand polarized Alfvén wave. A comprehensive study

on the instabilities in proton core  proton beam 

electron plasmas will be reported in our future publi

cations.

The acceleration and heating of the heavy ions are

also considerable in the solar wind[1, 24, 29]. We note

that the characteristics of the velocity distributions

of plasmas observed by   measurements give the

 to declare the acceleration and heating pro

cesses of the solar wind and the solar corona.

This work was supported by a rantinAid for

oung cientists tartup) o. 20840042 from .

        
  


        
 

          
       
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