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A Hamiltonian 4-field fluid model describing magnetic reconnection in collisionless plasmas is in-

vestigated both analytically and numerically. The noncanonical Hamiltonian structure of the model

is used in order to derive equilibrium equations and sufficient conditions for stability of equilibria in

the presence of toroidal flow. Numerical simulations of the model equations are then used in order

to investigate the vorticity evolution in the nonlinear regime. The coexistence of vortex-sheet-like and

filamented structures is observed, which had no counterpart in a previously investigated 2-field model.

Such evolution of the vorticity field is explained using the Casimir functionals of the system. Comments

on the dependence of the vorticity structure on the value of the electron skin depth are also given.
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1. Introduction
The rearrangement of the connectivity of mag-

netic field lines, denoted as magnetic reconnection,

is believed to be responsible for many catastrophic

events occurring in laboratory and astrophysical plas-

mas. Paradigmatic examples of phenomena that

are most probably related to magnetic reconnection

events are solar flares, magnetospheric substorms and

sawtooth oscillations in tokamaks [1, 2]. Magnetic

reconnection in plasmas can take place only if some

physical mechanism, such as e.g. collisions, electron

inertia or turbulence, is present, that, in a fluid de-

scription, violates the frozen-in condition and allows

plasma volumes not to remain linked to the same mag-

netic field line during the evolution of the system. In

high temperature plasmas, such as those present in

tokamaks, it is likely that electron inertia, that pre-

vents the plasma from behaving as a perfect conduc-

tor, can effectively break the frozen-in condition and

allow magnetic reconnection to take place.

In order to describe reconnection induced by electron

inertia in collisionless plasmas, a number of reduced

fluid models have been adopted (e.g. [3, 4, 5, 6, 7]).

In recent years a 2 1
2 dimensional 4-field model for de-

scribing reconnection in the presence of plasma ve-

locity and magnetic perturbations parallel to a guide

field, has been derived by Fitzpatrick and Porcelli [8].

This model can be seen as an extension to higher β

regimes (where β is the ratio between a constant equi-

librium plasma pressure and the magnetic pressure

exerted by the guide field) of the model derived by

Schep et al. [4]. An investigation, by means of ana-

lytical methods, of the properties of this 4-field model
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was carried out in Refs. [9, 10], where the noncanoni-

cal Hamiltonian structure of the system was derived,

spectral and linear stability of homogeneous equilibria

were discussed and a derivation of the tearing mode

growth rate, making use of a collisionless conductivity,

was presented. The 4-field model has also been inves-

tigated with numerical tools and the corresponding re-

sults have been shown mainly in Refs. [11, 12], where

a first qualitative analysis of the nonlinear structures

observed in the numerical simulations was carried out.

The present contribution resides in this line of investi-

gation of the 4-field model and shows both analytical

and numerical new results. In particular we extend

here the stability analysis provided in [10] by applying

the so called Energy-Casimir method, which makes it

possible to obtain sufficient condition for the stability

of equilibria of the system. Moreover we present re-

sults obtained from numerical solutions of the model

equations, that show the time evolution of the paral-

lel vorticity after the saturation of the reconnection

process, and how it is influenced by the value of the

electron skin depth.

The paper is organized as follows: after reviewing the

model equations and their Hamiltonian structure, we

derive equilibrium equations by means of a variational

principle. Subsequently, the Energy-Casimir method

is applied in order to obtain the conditions for sta-

bility. In Sec.3 the numerical results are shown and

qualitative features of the vorticity evolution governed

by the 4-field model are discussed. Section 4 is devoted

to conclusions.
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2. The model equations: Hamiltonian
formulation, equilibria and their sta-
bility

Let us consider a Cartesian coordinate system

(x, y, z). The model investigated in this contribution

consists, in a dimensionless form, of the following set

of equations:

∂(ψ − d2
e∇

2ψ)

∂t
+ [ϕ, ψ − d2

e∇
2ψ] (1)

−dβ [ψ,Z] = 0,

∂Z

∂t
+ [ϕ,Z]− cβ[v, ψ]− dβ [∇

2ψ, ψ] = 0,(2)

∂∇2ϕ

∂t
+ [ϕ,∇2ϕ] + [∇2ψ, ψ] = 0,(3)

∂v

∂t
+ [ϕ, v]− cβ[Z,ψ] = 0.(4)

The four fields ψ, Z, ϕ and v are functions of x, y

and time t, and are related to the magnetic field B

and to the plasma fluid velocity v by the relations

B(x, y, t) = ∇ψ × ẑ + (B(0) + cβZ)ẑ and v(x, y, t) =

−∇ϕ × ẑ + vẑ, where B(0) is a constant guide field,

cβ =
�

β/(1 + β), dβ = dicβ , while di and de indicate

the ion and electron skin depth, respectively. The

symbol [, ] indicates the canonical Poisson bracket, so

that [f, g] = (∇f ×∇g) · ẑ, for generic fields f and g.

The model (1)-(4) can be derived from the standard

two-fluid description of a plasma. Eqs.(1) and (2) can

be obtained from the parallel components of the elec-

tron momentum equation and electron vorticity equa-

tion, respectively, whereas (3) and (4) originate from

the parallel component of the average vorticity and of

the plasma fluid velocity equations, respectively.

2.1 Hamiltonian formulation
Given the absence of dissipative terms, the set

of equations (1)-(4) is a natural candidate for being a

Hamiltonian system. Indeed, the noncanonical Hamil-

tonian structure of the system has been derived in [9]

and thoroughly discussed in [10]. The derivation of

such structure follows from having realized that the

functional

H =
1

2

�

D

d2x (d2
eJ

2+ |∇ψ|2+ |∇ϕ|2+v2+Z2)

(5)

is a constant of motion for the system. In (5) J =

−∇2ψ is the parallel current density whereas D is

the domain of integration. Periodic boundary con-

ditions are imposed. The functional H represents the

total energy of the system, which includes both ki-

netic and magnetic contributions. The derivation of

the Hamiltonian structure of an n-field system is com-

pleted (see, e.g. [13]) when a suitable antisymmetric

bilinear quantity {, } (noncanonical Poisson bracket),

satisfying the Jacobi identity is found, such that the

model equations can be written in the form

∂ξi

∂t
= {ξi, H}, i = 1, · · · , n, (6)

with ξi indicating a set of field variables. The ex-

pression for the Poisson bracket of the 4-field model

(which has Lie-Poisson form [13]) in the original phys-

ical variables is lengthy and can be found in [10].

Noncanonical Poisson brackets have associated

Casimir functionals C [13], which are constants of mo-

tion characterized by the property {f, C} = 0, for ev-

ery f . In the case of the 4-field model, four infinite

families of Casimirs have been found, namely,

C1 =

�

D

d2xωF(D) , (7)

C2 =

�

D

d2xK(D) , (8)

C± =

�

D

d2x g± (T±) . (9)

In the above, F , K, g+ and g− are arbitrary functions

and we introduced the variables

D = ψ − d2
e∇

2ψ + div , (10)

ω = U +
di

cβd2
Z , (11)

T± = ±
di

2cβd3de

�

diψ − did
2
e∇

2ψ (12)

−d2
ev ∓ ddeZ

�

,

where d =
�

d2
i + d2

e and U = ∇2ϕ is the parallel vor-

ticity. Note that, by making use of the variables sug-

gested by the Casimirs, the set (1)-(4) can be rewritten

in the much more compact form

∂D

∂t
= −[ϕ,D], (13)

∂ω

∂t
= −[ϕ, ω] + d−2[D,ψ], (14)

∂T±

∂t
= − [ϕ±, T±] , (15)

where, for convenience, we have defined

ϕ± = ϕ±
cβd

de

ψ . (16)

This form makes it evident that the fields D, T+ and

T− are Lagrangian invariants of the system advected

by the incompressible flows associated with the stream

functions ϕ, ϕ+ and ϕ−, respectively.

2.2 Equilibria
Noncanonical Hamiltonian systems, such as the

Fitzpatrick-Porcelli 4-field model, possess a built-in

method for obtaining equilibrium solutions and inves-

tigating their stability (see, e.g. [13, 14, 15]). In-

deed, unlike canonical Hamiltonian systems, for which
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equilibria correspond to extremals of the Hamiltonian,

in the noncanonical case equilibrium solutions can be

found by setting to zero the first variation of the free

energy functional F obtained from a linear combina-

tion of the Hamiltonian functional with the Casimirs

of the system. In the case of the 4-field model such

functional reads

F [D,ω, T+, T−] =

�

D

d2x

�

c2βd
4

d2
i

(T 2
+ + T 2

−)+

D2

2d2
−

1

2
(ω + T+ + T−)∇

−2 (ω + T+ + T−)

−
1

2

�

de

d2
D + cβd(T+ − T−)

�

L

�

de

d2
D + cβd(T+ − T−)

�

+K(D) + ωF(D) + G+(T+) + G−(T−)] ,

(17)

where ∇−2 is the inverse Laplacian and L is an oper-

ator such that L(f − d2
e∇

2f) = f , for a function f .

Note that the first four lines of Eq.(17) contain the

expression for the Hamiltonian (5), rewritten in terms

of the variables D, ω, T±, which turn out to be more

convenient for this analysis.

The first variation of (17) is given by

δF =

�

D

d2x

��

D

d2
−

de

d2
L

�

de

d2
D+

cβd (T+ − T−)) +K
′

(D) + ωF
′

(D)
�

δD+
�

−∇−2(ω + T+ + T−) + F(D)
�

δω+
�

2
c2βd

4

d2
i

T+ −∇−2(ω + T+ + T−)−

cβdL

�

de

d2
D + cβd(T+ − T−)

�

+ g
′

+(T+)

�

δT++

�

2
c2βd

4

d2
i

T− −∇−2(ω + T+ + T−)+

cβdL

�

de

d2
D + cβd(T+ − T−)

�

+ g
′

−(T−)

�

δT−

�

.

(18)

Therefore, equilibrium solutions for the 4-field model

can be found by solving the system

D

d2
−

de

d2
L

�

de

d2
D + cβd(T+ − T−)

�

+

K
′

(D) + ωF
′

(D) = 0, (19)

−∇−2(ω + T+ + T−) + F(D) = 0, (20)

2
c2βd

4

d2
i

T± −∇−2(ω + T+ + T−)∓

cβdL

�

de

d2
D + cβd(T+ − T−)

�

+

g
′

±(T±) = 0. (21)

Different choices for the functions F , K, g± lead to

different classes of equilibria. In particular, from (20),

going back to the original variables, one sees that

fixing F(D) corresponds to choosing the equilibrium

poloidal flow. As an example, if one chooses

K(D) =
AD

2
D2, F(D) = AωD,

g±(T±) =
A±

2
T 2
± ,

(22)

with constants AD, Aω , A± then the resulting equilib-

rium equations contain as solutions the homogeneous

equilibria

ψ = αψx, ϕ = 0,

Z = αZx, v = αvx (23)

where αψ, αZ and αv are constant. The same choice

includes also the dipole vortex solutions that, in polar

coordinates (r, θ), have the form

χi(r, θ) = AiJ1(
�

λir) cos θ, i = 1, 2 (24)

where χ1 and χ2 are linear combinations of ψ and ϕ,

whereas A1,2 and λ1,2 are constant. The correspond-

ing solutions for v and Z are linear combinations of ϕ

and ψ [10].

The equilibrium equations (19)-(21) can also be writ-

ten in the following form:

∇2ψ = S(ψ, ϕ), (25)

∇2ϕ = P (ψ, ϕ), (26)

v(ψ, ϕ) = dia(ϕ)/d
2 −

cβded(t+(ϕ+)− t−(ϕ−))/di; (27)

Z(ψ, ϕ) = −
cβd

2

di

(t+(ϕ+) + t−(ϕ−)), (28)

where

S(ψ, ϕ) :=
ψ

d2
e

−
a(ϕ)

d2
−

cβd

de

�

t+(ϕ+)− t−(ϕ−)
�

, (29)

P (ψ, ϕ) := b(ϕ) + t+(ϕ+) + t−(ϕ−)

+a′(ϕ)
ψ

d2
. (30)

and t+(ϕ+), t−(ϕ−), a(ϕ), b(ϕ) represent arbitrary

invertible functions. The problem of finding equilib-

rium solutions amounts to solving the coupled sys-

tem given by (25) and (26) for the unknowns ψ and
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ϕ. In particular, Eq. (25) is a generalized Grad-

Shafranov equation that accounts also for an equilib-

rium flow, whereas (26) governs the equilibrium vor-

ticity. Once these two coupled equations are solved,

the corresponding solutions for v and Z can then be

easily found using (27) and (28).

2.3 Stability
Sufficient conditions for the stability of the equi-

libria of the 4-field model can be derived by mak-

ing use of the well known Energy-Casimir method

[16, 17, 18, 19, 20, 21, 13]. According to this method,

equilibria of a noncanonical Hamiltonian systems are

stable to infinitesimal perturbations if the second vari-

ation of the corresponding free energy functional has a

definite sign. For the system under consideration the

second variation of the free energy functional (HL in

Ref.[10]) reads

δ2F =

�

D

d2x

��

2c2βd
4

d2
i

+ g
′′

+(T+)

�

|δT+|
2+

�

2c2βd
4

d2
i

+ g
′′

−(T−)

�

|δT−|
2 +

�

K
′′

(D) +
1

d2
+

ωF
′′

(D)
�

|δD|2

−δ(ω + T+ + T−)∇
−2δ(ω + T+ + T−)−

δ

�

de

d2
D + cβd(T+ − T−)

�

Lδ

�

de

d2
D + cβd(T+ − T−)

�

+ 2F
′

(D)δωδD

�

.

(31)

It is convenient then to express the perturbations in

terms of the variables ψe = ψ − d2
e∇

2ψ, U , Z and

v. By making use of integration by parts and of the

definition of the operators ∇−2 and L, the resulting

expression for the second variation of the free energy

functional is the following:

δ2F =

�

D

d2x

��

2c2βd
4

d2
i

+ g
′′

+(T+)

�

�

�

�

�

δ

�

di

2cβd3de

�

diψe − d2
ev − ddeZ

�

��

�

�

�

2

+

�

2c2βd
4

d2
i

+ g
′′

−(T−)

�

�

�

�

�

δ

�

−
di

2cβd3de

�

diψe − d2
ev + ddeZ

�

��

�

�

�

2

+

�

K
′′

(D) +
1

d2
+ ωF

′′

(D)

�

|δ(ψe + div)|
2+

|∇δϕ|2 + |δψ|2 + d2
e|∇δψ|2+

2F
′

(D)δ

�

U +
di

cβd2
Z

�

δ (ψe + div)

�

.

(32)

Therefore, the positive definiteness of δ2F is obtained

if

2
c2βd

4

d2
i

+ g
′′

+(T+) > 0, (33)

2
c2βd

4

d2
i

+ g
′′

−(T−) > 0, (34)

F
′

(D) = F
′′

(D) = 0, (35)

K
′′

(D) +
1

d2
> 0. (36)

If (33)-(36) are satisfied, then δ2F = 0 if and only if

δT±, δD and δω are identically zero. According to the

Energy-Casimir method, an equilibrium of the 4-field

model satisfying (33)-(36) is linearly stable and with

some minor technical limitation on the Casimir func-

tions it can usually be shown to be (conditionally)

nonlinearly stable. Note that (35) implies that the

plasma fluid poloidal velocity be zero at equilibrium.

As a simple application of this result one could con-

sider the classes of equilibria originated by quadratic

Casimirs mentioned in Sec.2.2. Those equilibria turn

out to be linearly stable if

2
c2βd

4

d2
i

+A± > 0, (37)

Aω = 0, (38)

AD +
1

d2
> 0. (39)

In particular, if one focuses on the homogeneous equi-

libria, from the conditions (37)-(39) one can retrieve

the stability conditions that were derived in Ref.[10]

from an analysis of the dispersion relation. More pre-

cisely, by applying (37)-(39) to homogeneous equilib-

ria one finds

di − d2
e

αv

αψ

∓ dde

αZ

αψ

> 0, (40)

1 + di

αv

αψ

> 0. (41)

as stability conditions. These corresponds namely

to the conditions derived in [10] (cf. pp. 18-21),

that guarantee stability for all the four branches of

the dispersion relation. Note that, in the absence

of sources of free energy coming from gradients in

the equilibrium parallel magnetic and velocity (i.e.

αZ = αv = 0), the equilibrium is stable. Indeed such

gradients can excite drift-like modes and shear-flow

instabilities.

3. Numerical simulations
In order to investigate the nonlinear evolution of

the fields described by the 4-field model, the equa-

tions (1)-(4) have been solved numerically on a rect-

angular domain of 1024×1024 gridpoints with periodic
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boundary conditions. The chosen initial equilibrium

is given by ψ = sech2(x), Z = 0, v = 0, ϕ = 0 and

is known to be unstable to reconnecting perturbations

[22]. The perturbation applied to the equilibrium cur-

rent density and is of the form δj(x) cos(2πmy/Ly),

where δj(x) is a function localized around the recon-

nection layer centered at x = 0 and with a width of

order de, whereas m is an integer specifying the mode

of the perturbation and Ly is the length of the simula-

tion box along the y direction. For these simulations

the mode m = 1, which is the most unstable, has been

chosen.

The evolution of the magnetic field in the simulations,

on macroscopic scales, is qualitatively very similar to

that observed in previous simulations (e.g. [23], al-

though initialized with a different equilibrium mag-

netic field): the field lines reconnect around the neu-

tral line x = 0 forming a magnetic island whose width

grows in time until a saturation phase is reached and

a macroscopic steady state follows.

If, on the other hand, we focus on the evolution

of the vorticity, after the magnetic island has reached

saturation, we observe that two vertical vortex sheets

form along the x = 0 line and move toward each other

(see Fig. 1). These vortex sheets eventually collide and

form pairs of vortices that subsequently move in oppo-

site directions along the y = 0 axis. At a later stage,

the vertical vortex sheets are seen to become unsta-

ble to a Kelvin-Helmholtz type instability [11]. This

feature was already observed in simulations of a low-β

2-field model for cold electrons [25, 26]. However, the

novel feature of the 4-field model is that the process of

vortex sheet formation, and its subsequent destabiliza-

tion, occurs in the presence of filamented structures,

(enclosed in the magnetic island and most visible at

t = 35), which are suppressed in the 2-field model, in

the absence of electron compressibility. These struc-

tures are formed as a consequence of the stretching

of the fields T+ and T−, advected by the “velocity”

fields associated with ϕ+ and ϕ−, which rotate in op-

posite directions (a similar mechanism was described

in Ref. [24] for a 2-field model). Indeed, the vorticity

field U can be written as

U =
T+ − T−

2dedβ

+ ω. (42)

This expression shows that the vorticity can be de-

composed into two contributions: the first due to the

difference between the fields T+ and T− and the sec-

ond coming from ω. The former is responsible for the

presence of the filamented structures, whereas the lat-

ter (which has no counterpart in the 2-field model with

electron compressibility) gives rise to the vortex sheet

formation and their subsequent dynamics [12]. Note

that this coexistence of filamented and vortex-sheet-

like structures, observed in the 4-field model, occurs

Fig. 1 Contour plots at t = 35, 40, 45 of the parallel vor-
ticity field U for cβ = 0.3, dβ = 0.72 and de = 0.24.

only in a regime of non-negligible β. Indeed, for β ≃ 0,

one consistently retrieves either the vortex-sheet-like

structures or the vorticity filamentation, depending on

whether electron compressibility is negligible or not.

Finally we would like to note that the onset of Kelvin-

Helmholtz-like instability, that causes the breaking of

the vortex sheet structures, is sensitive not only to the

values of β and to the electron compressibility but also

to the value of the electron skin depth.

Indeed, by looking at Fig. 2, which refers to a

lower value of de, one can see that, although the

central vortex pair just formed as result of the vor-

tex sheet collisions, the two vertical structures in the

vicinity of the filamented regions, already broke up,

as a consequence of the instability. The more rapid
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Fig. 2 Contour plot at t = 50 of the parallel vorticity field
U for cβ = 0.3, dβ = 0.15 and de = 0.05.

occurrence of the instability as a consequence of a

decrease in the value of de was also observed in the

2-field model [26] and can be ascribed to the conse-

quent thinning of the vertical vorticity layers, whose

width grows with de. Thinner layers, indeed, imply

stronger velocity gradients, which favour the onset of

the Kelvin-Helmholtz-type instability.

4. Conclusions
In this contribution some properties of a 4-field

model for describing magnetic reconnection in colli-

sionless plasmas have been analyzed analytically and

numerically. After reviewing the Hamiltonian struc-

ture of the model equations, a variational principle has

been adopted to derive equilibrium equations that al-

low the classification of equilibria in terms of different

choices of the Casimir functionals of the model. The

second variation of the free energy functional has been

used in order to derive sufficient conditions for stabil-

ity of generic relative equilibria. These conditions con-

sistently coincide with those derived in Ref. [10] when

the specific case of homogeneous equilibria is consid-

ered.

Numerical simulations have been used in order to

carry out a qualitative analysis of the parallel vorticity

dynamics. Coexistence of vortex-sheet-like and fila-

mented structures in the contour plots of U at finite β

has been shown. This coexistence, prevented in previ-

ously investigated low-β 2-field models, is explained in

terms of the decomposition of the vorticity field into a

first component, related to the Lagrangian invariants

T+ and T−, that is responsible for the filamentation on

small scales, and to a second component, correspond-

ing to the field ω, that accounts for the vortex sheet

formation and dynamics. The Kelvin-Helmholtz-type

instability that causes the breaking of the vortex sheet

structures is seen to occur more rapidly when decreas-

ing the value of de, similarly to what happens in the

low-β limit in the absence of electron compressibility.

This behavior can be ascribed to the steepening of the

velocity gradients that occurs when de is decreased

and that accelerates the destabilization process.
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