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We examine generalized dimensions and the corresponding multifractal singularity spectrum de-

pending on one probability measure parameter and two scaling parameters, demonstrating that the

multifractal scaling is often asymmetric. In particular, we analyze time series of velocities of the slow

and fast speed streams of the solar wind plasma measured in situ by Advanced Composition Explorer

spacecraft. We show that the universal shape of the multifractal spectrum results not only from the

nonuniform probability of the energy transfer rate but rather from the multiscale nature of the cascade.

It is worth noting that for the model with two different scaling parameters a better agreement with

the solar wind data is obtained. Only in the case of the multiscale cascade one can reproduce the

entire multifractal spectrum, especially for the negative index of the generalized dimensions. Therefore

we argue that there is a need to use the multi-scale cascade model. Hence we propose this new more

general model as a useful tool for analysis of intermittent turbulence in various environments.
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1. Introduction
Multifractality is commonly related to a probabil-

ity measure that may have different fractal dimensions

on different parts of the support of this measure [1].

In this case the measure is multifractal. Here we pro-

pose a notion of multifractality based on an extended

self-similarity that depends on scale. We consider the

concept of the multiscale multifractality in the con-

text of scaling properties of intermittent turbulence

in astrophysical and space plasmas [2, 3]. To quan-

tify scaling of this turbulence, we use a generalized

weighted Cantor set with two different scales describ-

ing with various probabilities nonuniform intermittent

multiplicative process of distribution of the kinetic en-

ergy between cascading eddies of various sizes [4, 5].

The question of multifractality is of great impor-

tance for space plasmas because it allows us to look

at intermittent turbulence in the solar wind [6–12].

Starting from Richardson’s scenario of turbulence,

many authors try to recover the observed scaling ex-

ponents, using some simple and more advanced frac-

tal and multifractal models of turbulence describing

distribution of the energy flux between cascading ed-

dies at various scales. In particular, the multifractal

spectrum has been investigated using Voyager (mag-

netic field fluctuations) data in the outer heliosphere

[6, 7] and using Helios (plasma) data in the inner

heliosphere [11]. The multifractal scaling has also

been investigated using Ulysses observations, e.g., [13]

and with Advanced Composition Explorer (ACE) and

WIND data, e.g., [14, 15].
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In general, the spectrum of generalized dimen-

sions Dq as a function of a continuous index q, with

a degree of multifractality Δ = D−∞ − D∞, quan-

tifies multifractality of a given system [4, 5, 16]. A

chaotic strange attractor has been identified in the

solar wind data by Macek [17] and further examined

by Macek and Redaelli [18]. We have also considered

the Dq spectrum for the solar wind attractor using a

multifractal model with a measure of the self-similar

weighted Cantor set with one parameter describing

uniform compression in phase space and another pa-

rameter for the probability measure of the attractor of

the system. The spectrum of Dq is found to be consis-

tent with the data, at least for positive index q [19–23].

However, the full spectrum is necessary to estimate

the degree of multifractality. Notwithstanding of the

well-known statistical problems with negative q [21],

we have recently succeeded in estimating the entire

spectrum for solar wind attractor using a generalized

weighted Cantor set with two different scales describ-

ing nonuniform compression [4].

Therefore to further quantify turbulence, we have

considered this generalized weighted Cantor set also

in the context of turbulence cascade [5]. In this way

we have argued that there is, in fact, need to use a

multi-scale cascade model. Therefore we have already

investigated the multifractal spectrum of dimensions

depending on two scaling parameters and one prob-

ability measure parameter using Helios data and, in

particular, we have demonstrated that intermittent

pulses are stronger for asymmetric scaling and a much

better agreement is obtained, especially for q < 0.
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Fig. 1 Generalized two-scale weighted Cantor set model
for solar wind turbulence, cf. [2,4].

In this paper, we would like to test the degree of

multifractality and asymmetry of the multifractal scal-

ing for the wealth of data provided by another space

mission. Namely, we further consider the question of

scaling properties of intermittent turbulence using ve-

locities of the slow and fast speed streams of the solar

wind measured in situ by ACE during solar minimum

and maximum at Earth’s orbit, R = 1 AU. By using

our cascade model we show that the degree of multi-

fractality of the solar wind in the inner heliosphere is

greater for fast solar wind velocity fluctuations than

that for the slow solar wind. On the other hand, as the

solar activity decreases the slow solar wind spectrum

becomes more asymmetric. Thus we still hope that

this generalized new asymmetric multifractal model

could shed light on the nature of turbulence.

2. Two-Scale Cantor Set Model
At each stage of construction of the weighted two-

scale Cantor set we basically have two scaling parame-

ters l1 and l2, where l1+ l2 ≤ 1 (normalized), and two

different weights p1 and p2. To obtain the generalized

dimensions Dq ≡ τ(q)/(q − 1) for this interesting ex-

ample of multifractals we use the following partition

function at the n-th level of construction [24, 25]

Γq
n(l1, l2, p1, p2) =

�
pq
1

l
τ(q)
1

+
pq
2

l
τ(q)
2

�n

= 1. (1)

The resulting strange attractor of 2n closed inter-

vals (narrow segments with various widths and prob-

abilities) for n → ∞ is the generalized weighted two-

scale Cantor set.

Here we consider a standard scenario of cascading

eddies, each breaking down into two new ones, but

not necessarily equal and twice smaller as schemati-

cally shown in Fig. 1, cf. [2, 4]. In particular, space

filling turbulence could be recovered for l1 + l2 = 1.

Naturally, in the inertial region of the system of size

L, η � l � L, we do not allow the energy to be

dissipated directly, assuming p1 + p2 = 1, until the

Kolmogorov scale η is reached. However, in this range

at each n-th step of the binomial multiplicative pro-

cess, the flux of kinetic energy density ε transferred to

smaller eddies (energy transfer rate) could be divided

into nonequal fractions p and 1 − p. In particular,

for non space-filling turbulence, l1 + l2 < 1 one still

could have a multifractal cascade, even for unweighted

(equal) energy transfer, p = 0.5. Only for l1 = l2 = 0.5

and p = 0.5 there is no multifractality.

3. Solar Wind Data
We have already analyzed the Helios 2 data us-

ing plasma parameters measured in situ in the inner

heliosphere [4] for testing of the solar wind attrac-

tor. The X-velocity (mainly radial) component of

the plasma flow, vx, has been already investigated by

Macek [17, 19, 20] and Macek and Redaelli [18]. The

Alfvénic fluctuations with longer (two-day) samples

have been studied by in Ref. [4, 21] and [22, 23]. To

study the turbulence cascade Macek and Szczepaniak

have selected four-day time intervals of vx samples in

1976 (solar minimum) for both slow and fast solar

wind streams measured at various distances from the

Sun [5]. In this paper we analyze time series of ve-

locities of the solar wind measured by ACE in the

ecliptic plane near the libration point L1, i.e., approx-

imately at a distance of R = 1 AU from the Sun. Here

we have selected even longer (five-day) time intervals

of vx samples, each of 6750 data points, interpolated

with sampling time of 64 s, for both slow and fast

solar wind streams during solar minimum (2006) and

maximum (2001).

4. Methods of Data Analysis
The generalized dimensionsDq as a function of in-

dex q [24–27] are important characteristics of complex

dynamical systems; they quantify multifractality of a

given system [16]. In the case of turbulence cascade

these generalized measures are related to inhomogene-

ity with which the energy is distributed between dif-

ferent eddies [3]. In this way they provide information

about dynamics of multiplicative process of cascading

eddies. Here high positive values of q emphasize re-

gions of intense energy transfer rate, while negative

values of q accentuate low-transfer rate regions.

Let us consider the generalized weighted Cantor

set, where the probability of providing energy for one

eddy of size l1 is p (say, p ≤ 1/2), and for the other

eddy of size l2 is 1−p as depicted in Fig. 1. For any q

one obtains Dq = τ(q)/(q − 1) by solving numerically

the following transcendental equation, e.g., [16]

pq

l
τ(q)
1

+
(1 − p)q

l
τ(q)
2

= 1. (2)

In the inertial range the transfer rate of the energy

flux ε(l) is widely estimated by the third moment of

structure function of velocity fluctuations, e.g., [11]

ε(l) ∼
|u(x+ l)− u(x)|3

l
, (3)
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Fig. 2 The normalized transfer rate of the energy flux p(t) = εi(t) /
�

εi(t) obtained using data of the vx velocity
components measured by ACE at 1 AU for the slow (a) and (c) and fast (b) and (d) solar wind during solar
minimum (2006) and maximum (2001), correspondingly.

where u(x) and u(x+ l) are velocity components par-

allel to the longitudinal direction separated from a po-

sition x by a distance l. Therefore to each ith eddy of

size l in the turbulence cascade (i = 1, . . . , N = 2n)

we associate a probability measure defined by

pi(l) =
εi(l)�N

i=1 εi(l)
. (4)

This quantity can roughly be interpreted as a proba-

bility that the energy is transferred to an eddy of size

l = vswt. In Fig. 2 we show the multifractal measure

p(t) = εi(t) /
�

εi(t) given by Eqs. (3) and (4) and

obtained using data of the velocity components u = vx

(in time domain) as measured by ACE at 1 AU for

the slow (a) and (c) and fast (b) and (d) solar wind

during solar minimum (2006) and maximum (2001),

correspondingly.

Now, one can further associate a generalized av-

erage probability measure of cascading eddies

μ̄(q, l) ≡ q−1
�
�(pi)q−1�av, (5)

and identify Dq as scaling of the measure with size l,

μ̄(q, l) ∝ lDq . (6)

Hence, the slopes of the logarithm of μ̄(q, l) of Eq. (6)

versus log l (normalized) provides

Dq = lim
l→0

log μ̄(q, l)

log l
. (7)

The singularity spectrum f(α) = qα − τ(q) as a

function of α = τ �(q) could also be obtained by us-

ing Legendre transformation [16, 21], or directly from

the slopes or generalized measures. Using α0, where

f(α0) = 1, one can define a measure of asymmetry

A ≡ (α0 − αmin)/(αmax − α0).

5. Results
The results for the generalized dimensions Dq as

a function of q are shown in Fig. 3. The values of Dq

given in Eq. (6), for one-dimensional turbulence, are

again calculated using the radial velocity components

u = vx, cf. [22, Figure 3], and the corresponding re-

sults for the singularity spectra f(α) as a function of

α are shown in Fig. 4 for the slow (a) and (c), and

fast (b) and (d) solar wind streams at solar minimum

and maximum, correspondingly. Both values of Dq

and f(α) for one-dimensional turbulence have been

computed directly from the data, by using the exper-

imental velocity components.

In spite of statistical errors in Fig. 4 (a), b), (c)

and (d), especially for q < 0, we see that the multi-

fractal character of the measure can still clearly be dis-

cerned. Therefore one can confirm that the spectrum

of dimensions still exhibits the multifractal structure

of the solar wind in the inner heliosphere.

For q ≥ 0 these results agree with the usual one-

scale p-model fitted to the dimension spectra as ob-

tained analytically using l1 = l2 = 0.5 in Eq. (2) and

the corresponding value of the parameter p � 0.21

and 0.20, 0.15 and 0.12 for the slow (a) and (c), and

fast (b) and (d) solar wind streams at solar minimum

and maximum, correspondingly, as shown by dashed
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Fig. 3 The generalized dimensions Dq as a function of q. The values obtained for one-dimensional turbulence are calculated
for the usual one-scale (dashed lines) p-model and the generalized two-scale (continuous lines) model with parameters
fitted to the multifractal measure μ(q, l) obtained using data measured by ACE at 1 AU (diamonds) for the slow (a)
and (c) and fast (b) and (d) solar wind during solar minimum (2006) and maximum (2001), correspondingly.

lines. On the contrary, for q < 0 the p-model cannot

describe the observational results [11]. Here we show

that the experimental values are consistent also with

the generalized dimensions obtained numerically from

Eqs. (5-7) for the weighted two-scale Cantor set us-

ing an asymmetric scaling, i.e., using unequal scales

l1 �= l2, as is shown in Figs. 3 and 4 (a), (b), (c),

and (d) by continuous lines. We also confirm the uni-

versal shape of the multifractal spectrum, Fig. 4. In

our view, this obtained shape of the multifractal spec-

trum results not only from the nonuniform probability

of the energy transfer rate but mainly from the mul-

tiscale nature of the cascade.

It is well known that the fast wind is associated

with coronal holes, while the slow wind mainly origi-

nates from the equatorial regions of the Sun. Conse-

quently, the structure of the flow differs significantly

for the slow and fast streams. Hence the fast wind is

considered to be relatively uniform and stable, while

the slow wind is more turbulent and quite variable in

velocities, possibly owing to a strong velocity shear

[28]. We see from Table 1 that the degree of multi-

fractality Δ and asymmetry A of the solar wind in the

inner heliosphere are different for slow (Δ = 1.2−1.6)

and fast (Δ = 2.3− 2.6) streams; the velocity fluctua-

tions in the fast streams seem to be more multifractal

than those for the slow solar wind (the generalized di-

mensions vary more with the index q). On the other

Table 1Degree of multifractality Δ and asymmetry A for
solar wind data in the heliosphere

Slow Solar Wind Fast Solar Wind

Solar Min. Δ = 1.22, A = 2.21 Δ = 2.56, A = 0.95

Solar Max. Δ = 1.60, A = 1.33 Δ = 2.31, A = 1.25
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Fig. 4 The corresponding singularity spectrum f(α) as a function of α.

hand, it seems that in the slow streams the scaling is

more asymmetric than that for the fast wind. In our

view this could possibly reflect the large-scale scale

velocity structure. Further, the degree of asymmetry

of the dimension spectra for the slow wind is rather

anticorrelated with the phase of the solar magnetic

activity and only weakly correlated for the fast wind:

(A decreases from 2.2 to 1.3) only the fast wind dur-

ing solar minimum exhibits roughly symmetric scal-

ing, A ∼ 1, and one-scale Cantor set model applies.

We see that the multifractal spectrum of the so-

lar wind is only roughly consistent with that for the

multifractal measure of the self-similar weighted sym-

metric one-scale weighted Cantor set only for q ≥ 0.

On the other hand, this spectrum is in a very good

agreement with two-scale asymmetric weighted Can-

tor set schematically shown in Fig. 1 for both posi-

tive and negative q. Obviously, taking two different

scales for eddies in the cascade, one obtains a more

general situation than in the usual p-model for fully

developed turbulence [2], especially for an asymmetric

scaling, l1 �= l2. Hence we hope that this generalized

model will be a useful tool for analysis of intermittent

turbulence in space plasmas.

6. Conclusions
We have studied the inhomogeneous rate of the

transfer of the energy flux indicating multifractal and

intermittent behavior of solar wind turbulence in the

inner heliosphere. In particular, we have demon-

strated that for the model with two different scal-

ing parameters a much better agreement with the real

data is obtained, especially for q < 0. By investigating

the ACE data we have shown that the degree of mul-

tifractality of the solar wind in the inner heliosphere

is greater for fast solar wind velocity fluctuations than

that for the slow solar wind; the generalized dimen-

sions varies more with the index q. As the solar activ-

ity increases the slow solar wind becomes somewhat

more multifractal, and the fast wind is slightly less

multifractal. On the other hand, it seems that the de-

gree of asymmetry of the dimension spectrum for the

slow wind is rather anticorrelated with the phase of

the solar activity.
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Basically, the generalized dimensions for solar

wind are consistent with the generalized p-model for

both positive and negative q, but rather with different

scaling parameters for sizes of eddies, while the usual

p-model can only reproduce the spectrum for q ≥ 0. In

general, the proposed generalized multi-scale weighted

Cantor set model should also be valid for non space

filling turbulence. Therefore we propose this cascade

model describing intermittent energy transfer for anal-

ysis of turbulence in various environments.
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