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Experimental study of plasma turbulence has been proving theoretical predictions by using multi-channel
diagnostics and analyzing techniques such as bi-spectral analysis. We performed a fluctuation measurement of
the ion saturation-current with a 64-channel poloidal Langmuir probe array in the Large Mirror Device-Upgrade.
A number of fluctuation peaks in the poloidal wave number–frequency space were observed, and they satisfied
the matching conditions of wave number and frequency with each other. The nonlinear mode couplings among
the fluctuation peaks were confirmed by two-dimensional bi-coherence analysis. By amplitude correlation tech-
nique, three original parent modes were found. All the other fluctuation peaks were quasi-modes, which were
successively generated by mode couplings from the three original parent modes.
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1. Introduction
Theoretical studies and simulations on drift wave tur-

bulence predict interesting models that the drift waves are
strongly coupled with meso-scale waves such as zonal
flows and streamers, which have strong influences on trans-
port rates [1]. Recent progress on measurement methods
such as multi-channel measurements [2–5], and analyzing
techniques such as bi-spectral analysis [6,7] make it possi-
ble to observe these meso-scale structures in plasmas. For
example, zonal flow was measured in the Compact Heli-
cal System plasma [8], and streamer was measured in the
Large Mirror Device-Upgrade (LMD-U) linear plasma [9].
Experimental study has been proving theories and becom-
ing more important for investigating plasma turbulence to
contribute to the ITER project.

In order to study the nonlinear mode couplings and
meso-scale structures in drift wave turbulence experi-
mentally, multi-probe measurements were performed in
the LMD-U linear plasma. The LMD-U plasma al-
lows multi-channel Langmuir probe measurement because
of its low temperature. With the multi-channel mea-
surement, many interesting features of plasma turbulence
have been observed in LMD-U. For example, drift
wave modes [10], route to drift wave turbulence [11],
and broadband mode [12] were observed. With a 64-
channel poloidal Langmuir probe [13], two-dimensional
(2D) power spectrum of the ion saturation-current fluc-
tuation, which showed a number of fluctuation peaks in
the poloidal wave number–frequency space, was observed.
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The poloidal wave numbers and frequencies of the fluctua-
tion peaks satisfied the matching condition with each other
and suggested that these peaks were produced successively
by nonlinear mode couplings from three irreducible par-
ent modes [14]. The mode couplings among the fluctu-
ation peaks were confirmed by bi-spectral analysis with
considering only the matching condition in the frequency
space [11]. The results from 2D bi-spectral analysis, which
was considering the matching conditions of the poloidal
wave number and frequency, was introduced [9].

In this paper, we present the results from the 2D bi-
spectral analysis and investigation of the energy transfer
direction in detail. The successive generation of the quasi-
modes from the original parent modes is visualized.

2. 2D Bi-coherence Analysis
Bi-spectral analysis [6] examines the relationship

among three waves with wave numbers and frequencies of
(kkk1,ω1),(kkk2,ω2) and (kkk3,ω3), which satisfy the matching
conditions kkk3 = kkk1 + kkk2 and ω3 = ω1 + ω2. By using a
poloidal probe array, the matching conditions of not only
the frequency ω, but also the poloidal wave number kθ can
be considered. A poloidal probe array can measure the
poloidal mode number m of the fluctuation wave (m is an
integer), which is related to the poloidal wave number kθ
by m = rpkθ, where rp is the radius of the probe array.

When the Fourier transformed expression of a 2D
waveform z(θ,t) is Z(m, f ), where θ is the poloidal angle
of the probe and f = ω/2π, the bi-spectrum B of the three
waves is expressed as B = �Z(m1, f1)Z(m2, f2)Z∗(m3, f3)�.
When the three waves fluctuate independently, the absolute
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value |B| becomes 0. When the phases of the three waves
are connected by a certain relationship, |B| becomes finite.
The bi-coherence b, which is a normalized value of B, and
the bi-phase φb, which shows the relationship among the
phases of the three waves, are expressed as

b2 =
|B|2

�|Z(m1, f1)Z(m2, f2)|2��|Z(m3, f3)|2� ,

φb = tan−1
Im(B)
Re(B)

, (1)

respectively. Bi-coherence analysis is important for inves-
tigating the coupling among three waves. When the bi-
coherence b is finite for the three waves, it suggests that
one wave is produced by nonlinear mode coupling of the
other two waves.

2D bi-spectral analysis is effective when the plasma
turbulence has many fluctuation peaks in the m– f plane.
The mode couplings among the waves become clearer by
decomposing the bi-coherence analysis into the m plane.

3. Spectral Analysis in LMD-U
The LMD-U [10] vacuum vessel has the axial length

of 3740mm, with a straight axial magnetic field (0.01–
0.15 T). The LMD-U plasma has the plasma radius of
about 50mm, since the plasma is generated by radio-
frequency wave (7MHz / 3 kW) inside a quartz tube with
an inner diameter of 95mm. The quartz tube is filled with
argon gas with a pressure of 0.2–0.8 Pa. The electron den-
sity and temperature of the plasma are about 1019 m−3 and
3 eV, respectively. Resistive drift wave mode is excited in
the LMD-U plasma by its density gradient. By increas-
ing the magnetic field (over 0.04 T) or decreasing the ar-
gon pressure (under 0.4 Pa), the excited mode changes into
drift wave turbulence [12]. A 64-channel poloidal Lang-
muir probe array [13] at rp = 40mm is installed on LMD-
U.

The 2D waveform z(θ,t) of the ion saturation-current
fluctuation generated in LMD-U was measured with the
64-channel poloidal probe array. The sampling frequency
was 1MHz. In the discharge conditions of the magnetic
field of 0.02 T and the argon pressure of 0.27 Pa, the 2D
power spectrum S(m, f ) = |Z(m, f )|2 showed a single drift
wave mode with (m, f ) = (3, 4.2 kHz). In this paper, m≥ 0,
and positive f indicates the propagation in the electron dia-
magnetic direction. By increasing the magnetic field to
0.09 T, z(θ,t) changed into drift wave turbulence. In this
case, S(m, f ) showed a number of fluctuation peaks in the
m– f plane (see Fig. 1). The small extension of the mode
numbers of the fluctuation peaks is caused by the misalign-
ment of the probe tips, which was discussed in Ref. [13].
(In addition, broadband fluctuation with the same decay
laws in the m and f space was also observed [12].)

According to Fig. 1, the (m, f ) of the fluctuation peaks
are (A: 1, 2.8 kHz), (B: 2, 3.2 kHz), (C: 1, −0.9 kHz),
(D: 2, 5.6 kHz), (E: 2, 1.9 kHz), (F: 1, 4.1 kHz),
(G: 3, 8.4 kHz), (H: 3, 4.7 kHz), (I: 2, 6.9 kHz) and
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Fig. 1 Contour plot (arb. unit) of 2D power spectrum of ion
saturation-current fluctuation in LMD-U. The discharge
conditions (magnetic field, argon pressure) are (0.09 T,
0.27 Pa). Positive f indicates the propagation in the elec-
tron diamagnetic direction. The frequency resolution is
0.1 kHz. A number of fluctuation peaks, which satisfy
the matching conditions with each other, are observed.

(J: 3, 9.7 kHz). Examining the mode numbers and fre-
quencies of the fluctuation peaks, we can find out that
these fluctuation peaks satisfy the matching condition with
each other. For example, the peaks (D) and (G) are the
higher harmonics of the peak (A), i.e., (α: D = A + A)
and (β: G = A + D). Other matching conditions are
(γ: E = A + C), (δ: B = C + F), (ε: H = C + D),
(ζ: H = A + E), (η: I = A + F) and (κ: J = A + I). The
Greek letter is the label of each mode coupling.

When the matching condition exists, there is a possi-
bility that the three waves are nonlinearly coupled, and one
wave is forced to be excited by the other two waves. The
wave excited in this way is called quasi-mode [15]. By
this argument, we can suspect that many of the fluctuation
peaks are quasi-modes, which are excited by the origin of
three irreducible real modes. The combination of the three
original parent modes is considered to be (A, B, C) or (A,
C, F), for example. The mode coupling of the waves is
verified by bi-coherence analysis, and the energy transfer
direction from parent mode to child mode is estimated by
amplitude correlation technique.

4. Mode Couplings and Energy Transfer
To evaluate the mode couplings expected above, bi-

coherence analysis was applied to the ion saturation-
current fluctuation. The 2D Fourier transformed expres-
sion Z(m, f ) was calculated first, and m1, f1, m2 and f2
were chosen to investigate the bi-coherence b among the
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Fig. 2 Contour plot of squared bi-coherence among three waves
(m1, f1), (m2, f2) and (m3, f3), which satisfy the matching
condition (m1, m2, m3) = (1, 1, 2). Frequency ranges
are (–10 kHz ≤ f1, f2 ≤ 10 kHz) and (–20 kHz ≤ f3 ≤
20 kHz). Circles indicate the mode couplings α, γ, δ and
η. Values are the squared bi-coherence b2.
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Fig. 3 Contour plot of squared bi-coherence among three waves
(m1, f1), (m2, f2) and (m3, f3), which satisfy the matching
condition (m1, m2, m3) = (1, 2, 3). Frequency ranges are
the same as Fig. 2. Circles indicate the mode couplings
β, ε, ζ and κ. Values are the squared bi-coherence b2.

three waves (m1, f1), (m2, f2) and (m3 = m1 + m2, f3 =
f1+ f2). Figure 2 shows an example of the bi-coherence
analysis applied to Z(m, f ). In this figure, m1 is fixed to
1 and m2 is fixed to 1 (therefore, m3 = 2). The horizon-
tal and vertical axes are f1 and f2, respectively. Thus, the
squared bi-coherence b2 in the case of (m1,m2,m3) = (1,
1, 2) in the range of (–10 kHz ≤ f1, f2 ≤ 10 kHz) and (–
20 kHz ≤ f3 ≤ 20 kHz) is plotted in this figure. The result
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Fig. 4 Cross correlation functions between time evolutions of
wave powers; (a) CBF(τ) and (b) CAH(τ). τ of the peaks
indicate time delays of (a) (F) from (B) and (b) (H) from
(A). They are ensembles of ten discharges.

is an ensemble of 300 time windows (each time window is
10ms long), so that the confidence level is 0.003 (= 1/300).
Self-nonlinear coupling of (α: D = A + A), which is shown
at f1= f2 = 2.8 kHz, is weak (b2 = 0.04) but above the con-
fidence level. Other combinations of the mode couplings
can be confirmed in Fig. 2. The values of the squared bi-
coherence b2 are (γ: E = A + C: 0.54), (δ: B = C + F:
0.13) and (η: I = A + F: 0.11). Figure 3 shows the squared
bi-coherence in the case of (m1, m2, m3) = (1, 2, 3). The
mode couplings among waves with m = 1, 2 and 3 are clar-
ified. The values of the squared bi-coherence b2 are (β:
G = A + D: 0.27), (ε: H = C + D: 0.37), (ζ: H = A + E:
0.16) and (κ: J = A + I: 0.11). Thus, the expected mode
couplings were confirmed and it was proved that the num-
ber of the irreducible parent modes was three.

Bi-coherence analysis indicates only the existence of
the mode coupling among three waves. The quasi-mode
which is generated by the mode coupling of the other two
modes is not determined by bi-coherence analysis. There-
fore, the three original parent modes are not clarified yet.
The powers of the fluctuation peaks (A) and (C) are rela-
tively strong and stable in time, while other peaks appears
intermittently with short lifetimes. The correlation lengths
of (A) and (C) in the poloidal direction are long and they
are produced globally in the poloidal direction [12]. From
these facts, it is natural to conclude that (A) and (C) are
the original parent modes. The left problem is whether the
third parent mode is. (B) and (F) are the candidates.

To explore the parent mode between two modes, the
energy transfer direction is required. Amplitude corre-
lation technique [16, 17] can support to find the direc-
tion. This technique is effective when the amplitude of the
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waves fluctuate with time. Time evolutions of the powers
of two waves S1(t) = S(m1, f1,t) and S2(t) = S(m2, f2,t)
are calculated by short-time Fourier transformation, and
the cross-correlation function between S1(t) and S2(t) are
evaluated as

C12(τ) =
�[S1(t)− S̄1][S2(t + τ)− S̄2]��
�[S1(t)− S̄1]2��[S2(t)− S̄2]2�

. (2)

When the two waves fluctuate similarly in time, a peak in
the cross-correlation function appears near τ = 0 and the
time of the peak indicates the response of S2(t) to S1(t).
Figure 4(a) shows the cross-correlation function CBF(τ)
between the time evolutions of the powers of (B) and (F)
(time window is 10ms and move step is 0.2ms). The peak
of CBF(τ) is seen at τ = 2ms, which indicates that (F) re-
sponds in 2ms after the variation of (B). This delay time
means the typical duration which is needed to complete the
energy transfer from (B) to (F). Therefore, (B) is consid-
ered to be the parent mode of (F). The matching condition
can be rewritten as (F = B− C). Figure 4(b) shows another
example; the cross-correlation function CAH(τ). It has a
peak at τ = 1.6ms. Therefore, (H) responds in 1.6ms after
(A), and (A) must be the parent mode of (H).

By these analyses, the three original parent modes are
considered to be (A, B, C). All the other waves (F–J) are
quasi-modes, which are successively generated by mode
couplings from the original parent modes (A, B, C). (A)
and (B) have the features of drift wave [10], while (C) is
not a drift wave since its intensity is strong at the plasma
edge region and weak at the steep density gradient re-
gion [11]. Figure 5 is a summarized chart of the provided
results. The figure visually shows the successive genera-
tion of the quasi-modes from the original parent modes.
(A, B, C) are the original parent modes, (D, E, F) are the
quasi-modes of the first generation, (G, H, I) are those of
the second generation, and (J) is that of the third genera-
tion. Focused into (H), there are two paths to create (H);
(α → ε) and (γ → ζ). It can be said that (H) is created from
(A) and (C) by multi-path; one is by way of (D) and the
other is by way of (E).

5. Summary
In summary, by using a 64-channel poloidal Lang-

muir probe array, the 2D (poloidal mode number m and
frequency f ) power spectrum of the ion saturation-current
fluctuation was measured. 2D bi-coherence analysis,
which considers not only the matching condition of f but
also the matching condition of m, was applied for the ob-
served fluctuation peaks, and the existence of the nonlin-
ear mode couplings among the fluctuation peaks was con-
firmed. The energy transfer directions among the fluctua-
tion peaks were estimated by amplitude correlation tech-
nique. Thus, three original parent modes were found out
to be (m, f ) = (1, 2.8 kHz), (2, 3.2 kHz) and (1, −0.9 kHz).
Other fluctuation peaks were quasi-modes, which were
generated successively by mode couplings from the three
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Fig. 5 A chart that shows successive generation of quasi-modes
from the three original parent modes (A, B, C). Arrows
go from the parent mode to the child mode. The arrows
from (A) and (C) are omitted except the cases of α and γ.
The value near the arrow is squared bi-coherence of each
mode coupling.

original parent modes. A situation was observed that a
quasi-mode of the second generation was created by multi-
path.
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