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Approach to the Controlled Fusion Atomic Data Center

MINAMI Tatsuya1,2, SCHULTZ David R.1 and PINDZOLA Michael S.2

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372, USA
2 Department of Physics, Auburn University, Auburn, AL 368849, USA

（Received: 5 October 2004 / Accepted: 10 August 2005）

Abstract
We review the calculational method of the lattice time-dependent Schrödinger equation (LTDSE) approach.

Parallel computing implementation of LTDSE is also discussed. We apply the LTDSE approach here to
collisions of Be4+ ions on hydrogen atoms and demonstrate how it can contribute to the goals of the Controlled
Fusion Atomic Data Center.
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1．Introduction
The Controlled Fusion Atomic Data Center

(CFADC) is supported through the U.S. Department
of Energy, Office of Fusion Energy Sciences, and is
part of the Oak Ridge National Laboratory’s Physics
Division. The CFADC’s mission is to compile,
evaluate, recommend, and disseminate atomic and
molecular collision data relevant to fusion energy
research and development. The CFADC also maintains
a categorized bibliography of atomic and molecular
collision references relevant to fusion energy research
and development.

There are a variety of theoretical approaches to study
ion-atom collisions which are relevant to fusion en-
ergy research. Widely known and used examples of
such approaches include, various types of perturba-
tion theory methods, the classical trajectory Monte-
Carlo (CTMC) method, molecular orbital close cou-
pling (MOCC) methods, atomic orbital coupled channel
(AOCC) methods, and so forth. These approaches are,
however, reliable only within certain limitations, which
is a reflection of the validity conditions of the approxi-
mations each approach invokes.

In contrast to these approaches, the lattice time
dependent Schrödinger equation (LTDSE) method is
based on direct numerical integration of the time-
dependent Schrödinger equation. Thus, the limitations
are few regarding these approximations. On the other
hand, since the LTDSE approach is computationally
very intense, it is not always practical compared to other
approaches. For these characteristics, LTDSE’s suitable
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role, in present days, is to propose benchmarks for other
approaches.

In this paper, we review the calculational method of
the LTDSE approach and demonstrate its contributions
to the CFADC. Similar to other theoretical approaches,
LTDSE can provide a range of information concern-
ing ion-atom collisions, such as excitation, ionization,
charge transfer, and so forth [1-5]. In this paper, we fo-
cus on calculation of single electron capture from target
atoms to projectile ions in ion-atom collisions. Atomic
units are used throughout unless otherwise stated.

2．Calculational method
In the present treatment of ion-atom charge transfer,

we employ the so-called semi-classical approximation
in which the projectile ion travels along a straight line
trajectory. The calculation is performed in the projectile
frame for convenience to our numerical method. There-
fore, the projectile ion is at rest at the center of the three-
dimensional numerical grid and the target atom has a
position vector given by �R(t) = (0, b,−z0 + vPt), where
b is the impact parameter, vP is the collision velocity,
and −z0 is the initial internuclear coordinate along the
z-axis.

In particular, we solve the time-dependent
Schrödinger equation for one electron,

i
∂

∂t
ψ(�r, t) =

{
T + VT (�r, t) + VP(r)

}
ψ(�r, t) (1)

where ψ(�r, t) is the electronic wavefunction, �r is the po-
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sition of the electron in the projectile frame, and T is
the kinetic energy operator. VP(r) and VT (�r, t) are po-
tentials experienced by the electron due to the projectile
(P) ion and the target (T ) atom, respectively.

In the lattice approach, Eq. (1) is solved numerically
by integrating it on a discretized three-dimensional
space of finite volume. We adopt a cubic shape for this
volume with sides of length L. We set the origin of
Cartesian coordinates at the center of the cube and the
x-, y- and z-axis parallel to the sides, with N equally
spaced points in each direction. The states of the pro-
jectile ion, which consist of the captured electron stay
localized around this origin since we choose the projec-
tile frame as mentioned above. The choice of the cubic
volume with equally spaced lattice points is a conse-
quence of the particular representation of the derivative
operators and computer implementation that we have
used.

The spatial points are denoted as (xi, y j, zk) (i, j, k =
1, 2, · · · ,N) and the wavefunction at a given time t is
mapped to the vector ψ(xi, y j, zk, t) with dimension N3.
The potential operators are mapped to diagonal matri-
ces, e.g., VP(r)→ VP(xi, y j, zk)δi′,i δ j′, j δk′,k.

Regarding the configuration space kinetic energy op-
erator, its discrete representation is in general not diag-
onal. Here, we exploit the fact that the kinetic energy
operator is diagonal in momentum space. That is, after
discretization this operator is

T̃ (�p)→ 1
2

{
(px

i )2 + (py
j)

2 + (pz
k)2

}
δi′,i δ j′, j δk′,k, (2)

where �p is a coordinate vector in momentum space.
Using this property of T , we can define its operation

on the wavefunction ψ(xi, y j, zk, t), namely,

Tψ(xi, y j, zk, t) = F −1
[
T̃ ψ̃(px

i , py
j, pz

k, t)
]
, (3)

where F [X] means the discrete Fourier transform of X
and ψ̃(px

i , py
j, pz

k, t) = F
[
ψ(xi, y j, zk, t)

]
.

Assuming one has defined the potentials in Eq. (1),
which depend on collision systems being considered,
we may calculate bound states of the target and projec-
tile atoms. This is formally performed by diagonalizing
the target HamiltonianHT = T + VT and the projectile
HamiltonianHP = T + VP

HTφ
T
nlm = φ

T
nlmET

nlm, (4)

HPφ
P
nlm = φ

P
nlmEP

nlm, (5)

where φT
nlm and ET

nlm are the eigenstates and the eigenen-
ergies of the target and φP

nlm and EP
nlm are the eigen-

states and the eigenenergies of the projectile. The sub-
scripts n, l,m denote the principal, azimuthal and mag-

netic quantum numbers, respectively. Since the com-
plete diagonalization of the Hamiltonians is not practi-
cal for the very large dimensions of HT ,P in the lattice
representation, we use a partial eigensolution approach
to calculate the ground state for the target (which is the
initial state of the collision) and the low-lying states of
the projectile (which are the final states that we consider
here).

To initiate the calculation, the ground state of the tar-
get is used as the initial state of the system at t = t0

ψ(�r, t0) = φT
1s(�r − �R(t0)) exp(i�vP · �r) (6)

where exp(i�vP·�r) is the translation factor associated with
the moving orbital. The time evolution of the wavefunc-
tion ψ(xi, y j, zk, t) is then carried out using the split op-
erator method [6]. During the time evolution , the wave-
function is projected onto the projectile eigenstates,

anlm =〈φP
nlm|ψ(t)〉

=

(
L
N

)3 ∑
i, j,k

φP∗
nlm(xi, y j, zk)ψ(xi, y j, zk, t). (7)

Once the amplitude anlm reaches to its asymptotic limit,
the time evolution is terminated. For a fixed kinetic en-
ergy of the projectile, since anlm depends on the impact
parameter b, we rewrite the amplitudes as anlm(b). The
capture cross section to the state φP

nlm is, then,

σnlm = 2π
∫ ∞

0
db b |anlm(b)|2 . (8)

3．Numerical implementation for parallel com-
puters　
In some of our applications, the number of the lattice

(N) points along one axis is as large as 320. Hence the
dimension of the wavefunction vectors, ψ(xi, y j, zk, t) is
3203 in such a case. If we use a 16-byte array with the
dimension of 3203 in computer calculations to store the
wavefunction, we need about 500 Mega-bytes of mem-
ory for this array. This also applies to storages of the
eigenstates, potential matrix (which is diagonal), and so
forth. Therefore, a computer program for the numerical
calculation requires a few Giga-bytes of storage mem-
ory, after all. Most common workstations in present
days are not capable of handling programs with such
large memory storages. For this reason, we utilize par-
allel computers (or a cluster of work stations) for the
numerical calculations.

Our strategy to overcome the memory problem is to
divide up the three-dimensional space in layers perpen-
dicular to some coordinate axis (z-axis in our case). The
wavefunctions and the Hamiltonian correspond to each
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layer resides in memory devices that work with a single
processor element. By this strategy, if we denote num-
ber of the processor elements invoked to solve Eq. (1)
over the whole cube as Nproc, the required memory for
each processor element reduces to 1/Nproc of the total
required memory for the calculation. Each processor
element performs time integration of the Schrödinger
equation (1) on its own layer. However, operations such
as Eq. (3) or Eq. (7) require information on the all lay-
ers. Communication between each processor element
for this purpose is performed using the Message Pass-
ing Interface (MPI). MPI is a standard environment for
parallel computing and is incorporated by a variety of
architectures of parallel computers. We have chosen
MPI to make our program code portable among various
architectures.

Since the numerical integrations of the Schrödinger
equation (1) with different impact parameters are inde-
pendent each other, using parellel computers, we can
perform them simultaneously. If we denote number of
the impact parameters which we calculate simultane-
ously as Nb, the total number of the processor elements
necessary for the calculation is Ntot = Nproc × Nb.

4．Applications and results
We have applied the LTDSE method to the collisions

of Be4+ on H(1s) and report our result briefly in this
section. Further analysis of the result will be presented
elsewhere. Beryllium is one of proposed plasma fac-
ing materials in future fusion reactors such as the Inter-
national Thermonuclear Experimental Reactor, ITER.
Evaporated beryllium ions may enter the plasma of the
reactor as impurity and may affect conditions of con-
trolling the plasma. Therefore this collision system is
one of the most important elements of the controlled
fusion atomic data.

For the present application, we have chosen the
length of the sides of the cube being set at L = 40 a.u.
and the number of mesh points on the x-, y- and z-axis
being N = 245. We also determined that a starting point
of z0 = 10 a.u. provided a sufficiently large internuclear
distance to assure that we could neglect the interaction
between the projectile and the target at t = 0.

Figure 1 shows cross sections for electron capture
into each shell (n = 1 − 3) of the Be3+ ion. Result from
the LTDSE method is compared with ones from the
classical trajectory Monte-Carlo (CTMC) method [7], a
perturbation method [8] and the molecular orbital close
coupling (MOCC) method [9]. These references are
listed in the bibliographic database of the CFADC. The
most striking feature in the figure is that all calculations
agree very well for the n = 3 shell. In contrast, big-

10
-20

10
-19

10
-18

10
-17

10
-16

10
-15

10
-14

C
ro

ss
-s

ec
tio

n 
(c

m
-2

)

10 100 1000
Impact energy (keV/u)

10
-23

10
-22

10
-21

10
-20

10
-19

10
-18

10
-17

10
-16

10
-15

C
ro

ss
-s

ec
tio

n 
(c

m
-2

)

n=2

n=1

n=3

Fig. 1 Cross sections for the electron capture from the
target hydrogen atom to each n shell of the pro-
jectile Be3+ ion. Square: present calculation. Di-
amond: CTMC from [7]. Cross: perturbation ap-
proach from [8]. Circle: MOCC from [9].

ger deviations exist between different methods for the
n = 1 and the n = 2 shells. For the n = 1 shell, CTMC
and LTDSE share the same trend but the magnitude dif-
fers greatly from each other. The difference between
the two methods tends to increase for decreasing impact
energy. On the other hand, the trend of the perturbation
theory is very different from LTDSE. The cross section
by LTDSE has a peak at around 200 keV/u, whereas the
one by the perturbation theory monotonically decreases
with increasing impact energy.

For the n = 2 shell, all the calculation methods seem
to share the same trend. Especially, MOCC agrees very
well with LTDSE. CTMC also agrees well with LTDSE
over all but it tends to give bigger cross section than
LTDSE and MOCC for 20 keV/u and less impact en-
ergy. The perturbation theory agrees with LTDSE much
better compared to the case of the n = 1 shell, however
it tends to give bigger cross section than LTDSE and
CTMC.

In Figure 2, the electron-capture cross section into
n = 2 shell is resolved in each azimuthal quantum
number. For both states, CTMC and the perturbation
method give bigger cross sections than LTDSE over all.
The differences from LTDSE are the biggest at their
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Fig. 2 Cross sections for electron capture from the target
hydrogen atom to the 2s and 2p states of the pro-
jectile Be3+ ion. The same symbols in Fig. 1 are
used.

lowest impact energy and tend to decrease with increas-
ing impact energy. MOCC agrees with LTDSE for the
both states very well. Especially for 2p state, the dif-
ference from LTDSE is very small. For the 2s state,
MOCC gives a 10 % bigger cross section than LTDSE
and each curve runs parallel to each other.

In Figure 3, the electron-capture cross section into
n = 3 shell is resolved in each azimuthal quantum num-
ber. For the 3s state, CTMC gives 60 % smaller cross
section than LTDSE at impact energy of 10 keV/u and
the difference decreases with increasing impact energy.
The perturbation method gives 60 % bigger cross sec-
tion than LTDSE at the impact energy of 50 keV/u and
the difference decreases with increasing impact energy.
MOCC, again, agrees very well with LTDSE. For the
3p state, CTMC gives 50 % smaller cross section at the
impact energy of 10 keV/u and the perturbation method
gives 50 % bigger cross section at the impact energy of
500 keV/u. Otherwise, all the methods agree well for
the 3p state. Lastly, for 3d state, all the calculations
agree very well.

5．Summary
In this paper, we have discussed the calculational

method of the lattice time-dependent Schrödinger equa-
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Fig. 3 Cross sections for electron capture from the target
hydrogen atom to the 3s, 3p and 3d states of the
projectile Be3+ ion. The same symbols in Fig. 1
are used.

tion approach and its numerical implementation for par-
allel computers. We have demonstrated how the LTDSE
method can contribute to the goal of the Controlled Fu-
sion Atomic Data Center. Finally, we have presented an
application of the LTDSE method to collisions of Be4+

ions on hydrogen atoms and compared its result with
other methods from the bibliographic database of the
CFADC.
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