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Abstract
The purpose of this work is the evaluation of the linewidth w and lineshift d of the sodium resonance

line 3p −→ 3s when the excited atoms are evolving in their parent gas. Assuming the Baranger impact
approximation, these two quantities are given in terms of the phase shifts of the ground Na(3s) + Na(3s) and
the excited Na(3p)+Na(3s) states. The quantal calculations and the semi-classical method, developed by Mott
and Massey and Landau and Lifshitz, show that the cross sections σ and λ vary with the energy like E−1/2,
the width w and the shift d do not depend on the temperature, the long-range interactions have a big influence
on w and d, and the rate coefficients depend on the dispersion coefficients like w/n ≈ +7.298 × 10−8C3(Σ)
and d/n ≈ +8.893 × 10−9C3(Σ). The study also shows that the sodium results can be extended to the other
alkali-metal atoms (Li, K, Rb, Cs, and Fr) by a simple scaling.
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1．Introduction
The pressure broadening and shifting phenomena of

a spectral line occur when an absorbing or emitting
atom is perturbed by the atoms composing its gaseous
environment. Besides the natural broadening, the line
can be observed broadened symmetrically or asymmet-
rically and often accompanied by shift of the main fre-
quency.

In the present study, we are interested in the eval-
uation of the width w and the shift d of sodium reso-
nance line Na(3p −→ 3s) when this radiating atom is
interacting with Na(3s). The problem we consider here
concerns the allowed singlet transitions only, namely
1Σ+u ←→ X 1Σ+g and 1Πu ←→ X 1Σ+g . The former tran-
sition is denoted ΣΣ and the latter ΠΣ.

The singlet potential energy curves we have adopted
for the calculations are presented in Fig. 1. The sodium
ground and excited states, dissociating into 3s + 3s and
3p + 3s asymptotes, have been constructed by Côté and
Dalgarno [1] and Bouledroua et al. [2], respectively.
The leading terms in the long-range forms of both in-
teractions are

V(R) ∼
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−C6/R6, for Na(3s) + Na(3s)

−C3/R3, for Na(3p) + Na(3s)
(1)

where, in atomic units, C6 = +1472, C3(Σ) = +12.438,
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Fig. 1 The potential energy curves of the Na2 molecular
states involved in the singlet 3p −→ 3s transitions.

and C3(Π) = −6.219. These X 1Σ+g , 1Σ+u , 1Πu poten-
tial curves are necessary to solve numerically the cor-
responding radial wave equation and, thus, to compute
the phase shifts ηl(E) at each energy E and angular mo-
mentum l.

Once the phase shifts are known, they permit to
calculate quantum-mechanically the width and shift
cross sections, σ and λ. The average cross section
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Q (Q ≡ σ or Q ≡ λ) is simply the weighted sum

Qsinglet =
1
3

QΣΣ +
2
3

QΠΣ. (2)

All the results below are in atomic units.

2．Baranger method
Assuming the impact approximation, and by treating

quantum-mechanically the rectilinear motion of the per-
turbing atom, Baranger [3,4] found that the linewidth w
and the lineshift d are given by

w = +n 〈v · σ〉 (3)

d = −n 〈v · λ〉 , (4)

where n is the gas density and v is the relative velocity.
The symbol 〈· · · 〉 stands for the mean value calculated
over a Maxwellian distribution.

The width and shift cross sections σ and λ are the
sums [5]

σ =
4π
k2

∞∑
l=0

(2l + 1) sin2
(
η′l − η′′l

)
(5)

λ =
π

k2

∞∑
l=0

(2l + 1) sin
[
2
(
η′l − η′′l

)]
, (6)

k =
√

2µE being the wave number, with µ the reduced
mass of the radiator-perturber system. The phase shifts
η′l and η′′l correspond to the upper Na(3p) + Na(3s) and
lower Na(3s) + Na(3s) states.

3．Quantum calculations
We have computed the total width and shift cross

sections σ(E) = 1
3σΣΣ +

2
3σΠΣ and λ(E) = 1

3λΣΣ +
2
3λΠΣ

Fig. 2 Variation with energy of the width cross section σ
(E). The dashed line represents the result of the
fitting of our quantal data with the function σ ∼
aEα.

correlated to singlet transitions. Figure 2 displays the
case of σ variation with E.

We have further fitted both sets of data with the func-
tions σ ∼ aEα and λ ∼ bEβ. The constant param-
eters are found α = β 
 −0.50, a 
 17220.35, and
b 
 −2010.63. We conclude that both cross sections
vary with energy like 1/

√
E.

4．Semi-classical approximations
Since the values of l contributing in the expressions

(5) and (6) are large, Mott and Massey [5] and Lan-
dau and Lifshitz [6] proposed a semi-classical method
which consists to split the summation at a given angular
momentum l = L, to replace the discrete sums by in-
tegrals, and to substitute, for large l, the quantal phase
shifts by their asymptotic forms [5,7]

η′l ≈ µC3
k
l2

(7)

η′′l ≈
(
3πµ
16

)
C6

k4

l5
, (8)

with η′l � η′′l .
For the case of σ, we get

Fig. 3 Partial cross section, (2l + 1) sin2 η ′l , effective in
width corresponding to the ΠΣ singlet transition at
the energy E = 10–5.5 a.u.

Table 1 The singlet width and shift cross sections (in 106

a.u.) obtained for E = 1 K by different methods.

Cross section Quantal Fitting Semi-classical

σ +9.397 +9.684 +8.529

λ −0.943 −1.131 −1.039
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Table 2 Singlet width and shift rate coefficients of alkali monatoms. The µ and C3 constant values are from References
given in [2].

µ C3 w/n d/n

Alkali metal (a.u.) (a.u.) (10−7cm3 · rad · s−1) (10−7cm3 · rad · s−1)

7Li 6326.33 11.00 8.028 0.978
23Na 20953.89 12.44 9.077 1.106
39K 35635.92 16.89 12.33 1.502

85Rb 77899.13 17.88 13.05 1.590
133Cs 121135.89 20.10 14.67 1.788
210Fr 203252.07 17.69 12.91 1.573

Fig. 4 Partial cross section, (2l+1) sin 2η ′l , effective in
shift corresponding to the ΣΣ and ΠΣ singlet tran-
sitions at the energy E = 10–5.5 a.u.

σ ≈ 4π
k2

∫ L

0
2l sin2 η′ldl +

4π
k2

∫ ∞

L
2l sin2 η′ldl. (9)

The cut-off value L is obtained from the approximation
sin2 η′l=L 
 1/2. Making use of Eq. (7), we find

L 

[
2
π

(2µ)3/2 |C3|
√

E

]1/2

. (10)

Knowing C3(Σ) = 2 |C3(Π)|, the calculations lead to the
semi-classical expression

σ(E) ≈ 1
3

(
8 + π2

)
C3(Σ)

√
2µ
E
≡ a√

E
. (11)

Numerically, 2µ = 41907.79,C3(Σ) = +12.438, and
a 
 15166.70; for E = 1 K ≈ 10−5.5, we find L 
 245.
Figure 3 illustrates this numerical result for the case of
the ΠΣ transition. The weighted values of σ(E) at this
energy are given in Table 1. The results obtained by
different approaches are very close.

When applying the same technique to the shift cross

section λ, the second term corresponding to l > L di-
verges. To overcome this divergence, one has to apply
the procedure on the weighted sum λ(E) = 1

3λΣΣ+
2
3λΠΣ.

By doing so, the semi-classical method yields the ap-
proximate formula

λ(E) ≈ −2π
3

C3(Σ) ln
(

LΣΣ
LΠΣ

) √
2µ
E
≡ b√

E
(12)

where L 
 √
2µ |C3| k and LΣΣ/LΠΣ 


√
2. Table 1 lists

our results obtained for E = 1 K by different methods.
The agreement is excellent. We also report in Fig. 4 the
partial shift cross sections, (2l+1) sin 2η′l , relative to the
ΣΣ and ΠΣ transitions at the same energy. The straight
lines ±2l come from the fact that, for l < L, the sine
function lies between −1 and +1.

It is interesting to point out that the semi-classical
method shows explicitly the influence of the long-range
forces, via the dispersion coefficients C3, on the width
and shift cross sections, hence on the spectral linewidth
and lineshift.

5．Statistical average
We have found that both cross sections obey the gen-

eral formula Q(E) 
 A/
√

E, with A a constant. Suppos-
ing a Maxwellian distribution, it is easy to get

〈v · Q〉 
 A

√
2
µ
. (13)

From the expressions (3) and (4), we notice that the
width w and the shift d do not depend on temperature
T . The singlet rate coefficients, in cm3 · rad · s−1, are
given by

w
n
∼ +7.298 × 10−8 C3(Σ) (14)

d
n
∼ +8.893 × 10−9 C3(Σ), (15)
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the density n being in cm−3.
For Na resonance line, the computation yields w/n 


9.077×10−7 cm3 · rad · s−1 and d/n 
 1.106×10−7 cm3 ·
rad · s−1. When compared to quantum-mechanical re-
sults, these singlet width and shift rates are respectively
12 % and 8 % smaller.

From the above relations, one may notice that the
linewidth and lineshift are exclusively given in terms of
the dispersion coefficient C3. It is therefore possible to
deduce the values of the rate coefficients for the other
alkali metals just by a simple scaling. Their estimated
data are presented in Table 2.
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