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Abstract

The previous studies of backward wave oscillators (BWOs) have been restricted in the operation at the
fundamental axisymmetric TM mode. However, nonaxisymmetric operations of BWO are observed in the experiments
and become important. In this work, the Rayleigh-Bessel (R-B) method is improved in order to analyze the
nonaxisymmetric as well as axisymmetric fields in a periodic slow-wave structure (SWS). This method is based on
the Rayleigh hypothesis, whose limit has been argued extensively. For the X-band SWS, the modulation depth is
about 4 times of the theoretically established limit of the Rayleigh hypothesis. We compare the R-B method with
another one based on a numerical integration of Maxwell equations, which is free from the Rayleigh hypothesis. The
field properties derived by the R-B method show some singularities inside the corrugation due to the Rayleigh
hypothesis. However, regardless the singularities, the dispersion characteristics and the fields outside the corrugation
are in very good agreement with those by the numerical integration. The validity of the R-B method is discussed.
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1. Introduction

The slow-wave high-power microwave devices such as
backward wave oscillator (BWO) have one element in
common, that is a slow-wave structure (SWS) such as Fig. 1
[1]. It is very important and essential to know the field
properties in the SWS, to understand and to use the wave-
particle interaction in the slow-wave devices [1]. Theoretical
and experimental studies have been performed extensively
based on the axisymmetric transverse magnetic (TM) mode
[2-5]. For the axisymmetric case, a pure transverse electric
(TE) mode is ignored because it cannot interact with the beam
in the slow-wave devices [6]. Recently, high-power BWO
operations in nonaxisymmetric hybrid mode are demonstrated
and become very important [6-8]. The previous studies of the
slow-wave devices should be extended to nonaxisymmetric
cases.

Periodic structures and gratings are widely used in
modern science and technology such as optics, acoustic
design, infrared spectroscopy and microwave technology
[9,10]. Among the various methods to analyze such periodic
systems, the Rayleigh methods are particularly simple and
important [11-13]. They are based on the Rayleigh hypothesis
that the fields inside the periodic corrugation are also
expressed by the same spatial harmonic series as outside the

corrugation. Its criterion of 2πh/z0 < 0.448 has been
established theoretically with the Dirichlet boundary, based
on a scattering of a plane wave by a sinusoidally corrugated
surface, in a semi-infinite domain [10-12]. If this condition is
not fulfilled (2πh/z0 > 0.448), the spatial harmonic series
expansion has singularities inside the corrugation. This means
that the field expression using the harmonic series outside the
corrugation is not continued analytically into the corrugation
region. For the X-band SWS in Fig. 1, the modulation depth
is about 4 times this limit. However, the experiment shows
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Fig. 1 X-band periodic SWS. The radius varies along the axial
direction z as R0 + hcos((2π /z0)z) with R0 = 14.45[mm], h
= 4.45[mm], z0 = 16.7[mm] and 2πh/z0 = 1.67.
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excellent agreements with the Rayleigh-Bessel (R-B) method,
one of the Rayleigh methods [2,3]. The agreement is shown
not only by the dispersion characteristics but also by the field
distributions of axisymmetric TM modes. The validity of the
R-B method seems not to be determined by only the limit of
the Rayleigh hypothesis, and should be examined more
definitely. Moreover, for nonaxisymmetric cases, the normal
mode becomes hybrid of TM and TE and the boundary
condition should include both polarizations of TM and TE.
The problems are mixed problems of Diricrhlet and Neumann
boundaries.

This work is aimed at studying electromagnetic field
properties of axisymmetric and nonaxisymmetric modes in the
X-band SWS. We use two methods, one is the R-B method
and the other is a numerical integration of Maxwell equations
using the higher-order implicit difference method (HIDM)
[14,15]. The latter is free from the Rayleigh hypothesis. The
validity of the R-B method is discussed.

2. Numerical methods

In the R-B method, the temporal and spatial phase factor
of all perturbed quantities is assumed to be exp[i(kzz + mθ –
ωt)]. Here, m is the azimuthal mode number and kz is the
axial wave number. Outside the corrugation (r <= R0 – h),
Floquet’s theorem is exactly applicable. The axial electric and
magnetic field components in the cylindrical system can be
expresses as
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where, Jm is the mth order Bessel function of the first kind, kp

= kz + pk0 and p is Floquet’s harmonic number. The other
field components are derived from eq. (1).

At the wall of SWS (r = Rw), two electric field
components tangential to the wall, i.e. Elt in the r-z plane and
Elθ in the θ direction, should be zero. A serious problem is
how to express the electric field inside the corrugation. The
Rayleigh hypothesis assumes that the fields inside the
corrugation are also expressed by eq. (1). With this
hypothesis, the spatial Fourier transform of the boundary
conditions can be expressed as,

D(Z +) D(Z –)

D(T +) D(T –)
· A

B
= 0 . (2)

Here, A and B are column vectors with elements Ap and Bp,
and D(Z±) and D(T ±) are matrixes of an infinite rank. The
dispersion relation is obtained from the condition that eq. (2)
has a nontrivial solution and is given by

det
D(Z +)(ω, kz)D (Z –)(ω, kz)

D (T +)(ω, kz) D(T –)(ω, kz)
= 0 . (3)

Equations (2) and (3) are a extended version of refs. [2-4] to

nonaxisymmetric normal modes.
Another method free from the Rayleigh hypothesis is a

numerical integration of Maxwell equations. Using the field
expression of Φ (r, θ, z) = r mϕ(r, z)exp[i(mθ – ω t)], the wave
equations for TM and TE components can be expressed as
the following form,

ε0 µ0ω2ϕ +
∂ 2ϕ
∂z 2

+
∂ 2ϕ
∂r 2

+ 2m + 1
r

∂ϕ
∂r

= 0 . (4)

Without the expansion of eq. (1), the differential equations in
the form of eq. (4) for TM and TE are numerically solved
subjected to the given boundary conditions by using the
computer code HIDEM [14,15]. Equation (4) is the elliptic
differential equation and the solutions by the numerical
integration are unique for appropriate boundary values.

3. Numerical analysis of field

Dispersion curves of the lowest axisymmetric and
nonaxisymmetric normal modes are shown in Fig. 2. In the
axisymmetric case (m = 0), D(Z–) and D(T–) become zero
matrixes. Hence, eq. (3) gives pure TM0n (det[D(Z+)] = 0) and
TE0n (det[D(T+)] = 0) modes. In the nonaxisymmetric cases,
boundary conditions at the SWS wall combine TM and TE
components. The normal modes become hybrid modes.
Combinations of two letters, EH and HE, are commonly used
for the designation of hybrid mode. Note that this definition
is rather arbitrary. In this paper, the definition in the field of
the plasma physics is used. In the limit of h → 0, EH becomes
TM and HE becomes TE. This is opposite to the definition
based on the so-called normalized hybrid factor [9].

Fields patterns of TM01 and HE11 are shown in Figs. 3
and 4, respectively. Inside the corrugation, the patterns of two
methods are quite different. For the R-B method, the
singularities due to the Rayleigh hypothesis can be seen inside
the corrugation for both TM01 and HE11. These singularities
move to the wall as decreasing the h, and disappear if the
criterion of the Rayleigh hypothesis is fulfilled, 2πh/z0 <
0.448. The same behavior of the singularities is observed for
pure TM and TE polarities, and also for the hybrid HE and
EH modes. This means that the limit of the Rayleigh
hypothesis independents of the TM/TE polarization and is
applicable to the mixed problem of Diricrhlet and Neumann
boundaries.

Fig. 2 Dispersion curves of TM01, HE11, HE11 and TE01.
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The singularities inside the corrugation do not disappear
by increasing the matrix size M0 of eqs. (2) and (3). This is
because that the singularities are attributed to the Rayleigh
hypothesis. For particular values of kz, the field patterns of
two methods differ near r ≈ R0 - h, at the top region of wall
for pure TM and hybrid HE and EH, not TE, as shown in
Fig. 4. The singularities affect the fields inside and near the
corrugation. However, regardless the existence of singularity,
the R-B method converges with increasing M0, as can be seen
in Fig. 5. Above M0 = 7, the dispersion curves for
axisymmetric and nonaxisymmetric modes are well
converged. The convergent frequencies coincide excellently
with those of the numerical integration, within 0.1 %.

In Fig. 6, radial profiles of electric field obtained by two
methods are shown. They coincide in the entire region if the
criterion of the Rayleigh hypothesis is fulfilled, 2πh/z0 <
0.448. For the X-band SWS, the field of the R-B method
diverges near the wall due to the singularities and is slightly
smaller than the numerical integration method in the region
of r ≈ R0. However, the fields are almost the same outside the
corrugation r < R0 - h. The singularities may affect the
coefficients of eq. (1) and change the fields inside and near
the corrugation. This effect may appear as a change in
effective R0 and/or h, that is, sift of the dispersion curves. For

the X-band SWS, the difference of two methods is very small
and it can be said that the effect of singularity is effectively
negligible outside the corrugation.

4. Discussion and summary

The R-B method can explain the experimental results.
As an example, experimentally obtained dispersion
characteristics are plotted in Fig. 7. They are in good
agreement. The R-B method expects a slightly up-shifted
curve, within 1 %. Manufacture accuracy of the SWS is of
the order of 0.1 mm and can lead this difference. For example,
the numerical dispersion characteristics almost completely
coincide with the experimental results if R0 and h increased
by 0.14 mm (1 %) and 0.04 mm (1 %), respectively. Detailed
comparison of the R-B method and experiment have been
reported in Refs. [2-4]. In these experiments, not only the
dispersion characteristics but also the field profiles outside
the corrugation are examined experimentally and are well
fitted by the R-B method.

The validity of the R-B method can be argued from two
criteria.

(a) No singularities inside the corrugation (r > R0 - h).

Fig. 3 Distribution of |E | for TM01 at kzz0 = 0.5π, obtained by (a)
the R-B method and (b) the integration method.

Fig. 4 Distribution of |E | for HE11 at kzz0 = 0.5π, obtained by (a)
the R-B method and (b) the integration method.

Fig. 5 The frequencies of the R-B method at kzz0 = 0 and π
versus M0. The frequencies of the numerical integration
method (broken lines) and experiment (solid lines) are
also shown. Fig. 6 Radial distribution of |E | at z = 0 in Fig. 3 with (a) 2πh/z0

= 1.67 and (b) with 2πh/z0 = 0.446. The radial profiles of
electric field by HIDM draws solid line, and that by R-B
method draws broken line.
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(b) The convergence outside the corrugation (r < R0 -
h).
The criterion (a) is the limit of the Rayleigh hypothesis. In
this work, this limit is clearly shown by the appearance and
disappearance of the singularities in the physical mapping.
The criterion of 2πh/z0 ≈ 0.448 is confirmed for TM and TE
polarization by changing h. However, the failure of (a) does
not mean directly the unavailability of the R-B method as is
presented and discussed in this paper. The field expression of
eq. (1) is strictly valid outside the corrugation. The convergent
solution of the R-B method is very close to the field obtained
by the numerical integration by HIDM. It can be concluded
that the expansions in the R-B method converge closely to
the unique solution of the X-band SWS, independently of
whether the Rayleigh hypothesis is satisfied or not. This may
be the reason why the R-B method is in good agreement with
the X-band experiment in Fig. 7 and Refs. [2-4]. The
existence of singularities may affect the coefficients. The
detailed and systematic study on this effect is required in

Fig. 7 Comparison of dispersion characteristics: the R-B
method with M0 = 7 (solid line), the numerical
integration method (circle) and the experiment data
(triangle).

order to obtain the more general criterion for the Rayleigh
methods.
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