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Abstract

With a low-degree-of-freedom model composed of 18 ordinary differential equations (ODEs), it is shown that
intermittent oscillations are generated by nonlinear interactions between toroidal ion temperature gradient (ITG) driven
modes and self-generated sheared flows. The intermittent oscillations are also observed when higher harmonics are
included and the number of ODEs is increased up to 56. However, in the cases considered here, if more higher harmon-
ics are included, the saturation level of the kinetic energy becomes lower and the period of intermittency becomes
shorter for the same value of the ion pressure gradient.
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The anomalous transport governed by microscopic tur-
bulence is one of the most important issues in the research of
magnetically confined plasmas [1]. Ion temperature gradient
(ITG) driven turbulence [2-5] is responsible for the anom-
alous ion thermal transport in the core region of tokamaks as
observed in fluid simulations [2,6], gyrofluid simulations
[7,8], and gyrokinetic simulations [9].

In order to understand the physics of nonlinear interac-
tions between anomalous transport and sheared plasma flow,
we find it useful to analyze low-degree-of-freedom models
that describe essential dynamics governed by partial differen-
tial equations.

It was shown that dynamics of resistive interchange tur-
bulence is well described by extended Lorenz systems, i.e.,
coupled ordinary differential equations (ODEs) for low order
modes. Takayama et al. [10] studied 5,6 and 7 ODE models
for resistive interchange turbulence and showed that an
ELM-like behaviour is obtained with the generation of
sheared flows and suppression of the turbulence.

The ITG mode has intrinsically twice the number of
degrees of freedom compared with the resistive interchange
turbulence since it contains wave phenomena. Hu and Horton
[11] gave an 11 ODE model for toroidal ITG turbulence and
discussed transport barrier dynamics with oscillations in
kinetic energy such as barrier localized modes (BLM).

This article is organized as follows. In Sec. 2, model

1. Introduction equations describing the toroidal ITG mode are given and its
linear stability is analyzed. We also introduce our low-
degree-of-freedom models in Sec. 2. In Sec. 3, our numerical
simulation results are presented.

2. Models

The toroidal ITG-driven turbulence in a slab is described
by the following vorticity and ion pressure equations given
by Horton, Choi and Tang [3]:

where

are the Poisson brackets. Here g = 2Ln/R is the effective grav-
ity due to curvature of magnetic field, Ki = Ti/Te(ηi + 1) is the
equilibrium ion pressure gradient with ηi = d ln Ti/d ln n, µ is
the viscosity and κ is the thermal conductivity. Here x and y
correspond to the radial and poloidal directions, respectively.
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The standard drift wave units x ≡ x/ρs, y ≡ y/ρs, t ≡ (Ln/cs)t, p
≡ LnTi0/(ρsPi0Te0)p, φ ≡ eLn/(B0Te0ρs)φ, µ ≡ eLn/(B0Te0ρs)µ,
and κ ≡ eLn/(B0Te0ρs)κ are used for normalization, where cs is
the ion sound velocity, ρs = cs/Ωi, and Ωi is the ion cyclotron
frequency.

By linearizing Eqs. (1) and (2), the following dispersion
relation of the toroidal ITG mode is obtained,

The dispersion relation (4) gives the linear growth rate as

where

From Eq. (5), the most unstable mode is estimated as

Therefore, as the fundamental mode of our numerical simula-
tions, we have selected a mode close to the most unstable
mode satisfying

with kx = [(1 − g)/5Ki]1/2 and ky = [4(1 − g)/5Ki]1/2.
In order to construct low-degree-of-freedom models,

variables φ(t, x, y) and p(t, x, y) are expanded as follows, 

where Nx (Ny) is the maximum mode number in the x (y)
direction. By substituting Eqs. (9) and (10) into Eqs. (1) and
(2), we obtain coupled ordinary differential equations
(ODEs) for the harmonics. The 11 ODE model given by Hu
and Horton [9], which corresponds to Nx = 2 and Ny = 1, gen-
erates an L-H like transition and oscillatory behaviour.
However the obtained sheared flow is not strong enough to
suppress the ITG turbulence and therefore the transition
seems to be weak. So we have increased the degrees of free-
dom from 11 to 18 (Nx = 3 and Ny = 1) [12] and more in order
to analyze the anomalous transport and sheared flows gener-
ated by nonlinear ITG modes with higher accuracy. In the
small Ki region of Ki ≤ 3, a bifurcation process similar to that

observed in the 11 ODE model also appears in the 18 ODE
model. The noteworthy difference between the 11 and 18
ODEs is that, only in the case of 18 (or larger) ODEs, inter-
mittent bursts (so called avalanches) are observed in the time
evolution of the kinetic energy and the Nusselt number when
Ki is large. This results from the competition of the three fac-
tors, i.e., ITG turbulence that generates shared flows, the
sheared flows that suppress the ITG turbulence, and viscosity
that suppresses the sheared flows.

3. Numerical results

The kinetic energy due to velocity fluctuations may be
calculated from the vorticity equation (1) as

So the kinetic energy can be calculated separately for shear
flow components (my = 0 mode) and other harmonic modes
as follows

To characterize the anomalous thermal transport, we also cal-
culated the Nusselt number, which is the ratio of the total
heat transport including convective or anomalous transport to
the conductive heat transport defined as

Figures 1 and 2 show simulation results for Ki = 8 from the
18 ODE model, which corresponds to Nx = 3 and Ny = 1.
Time evolution of the kinetic energy is shown in Fig. 1.

Fig. 1 Time evolution of (a) total kinetic energy and kinetic
energy of (b) the sheared flow K0, (c) the 1st harmonic
K1,1, (d) the 2nd harmonic K2,1, and (e) the 3rd harmon-
ic K3,1 in the case of Nx = 3 and Ny = 1 for Ki = 8.
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Intermittent bursts, so called avalanches, are caused by non-
linear interactions between the ITG modes and the sheared
flows. As the ITG modes grow, the sheared flows are gener-
ated through the Reynolds stress. Sufficiently strong sheared
flows can suppress the ITG modes quickly. After the ITG
modes are suppressed, with the lack of a flow source, the
sheared flows gradually decay due to viscosity. Time evolu-
tion of the Nusselt number Nu is presented in Fig. 2, where
one sees that the Nusselt number bursts at the time when the
ITG modes grow rapidly.

For comparison, we have also studied the case of Nx = 4
and Ny = 3. Simulation results for Nx = 4 and Ny = 3 (56 cou-
pled ODEs) are shown in Figs. 3 and 4 for Ki = 8, i.e., the
same value as that of Figs. 1 and 2. Intermittent bursts of the
kinetic energy and the Nusselt number fluctuations are also
observed. However the saturation level of the kinetic energy
is lower and the period of bursts is shorter than those in the
case of Nx = 3 and Ny = 1.

In summary, it is verified that the essential nonlinear
behaviour of the system can be at least qualitatively account-
ed for by nonlinear interactions of several low order harmon-
ics. We also find that such intermittent bursts also occur in
our model of the 24 ODEs (Nx = 4 and Ny = 1), the 30 ODEs
(Nx = 3 and Ny = 2), and the 40 ODEs (Nx = 4 and Ny = 2)
although their saturation levels and the periods of bursts are
different. Among these cases, the mode saturation levels and
burst periods decrease as the number of higher modes includ-
ed in the ODE model increases. These quantities may con-
verge to certain values when we increase the degrees of free-
dom. We believe these models, which contain the most
unstable mode and several low-order harmonic modes, are
likely to capture the essential dynamical effects of the origi-
nal physical system.

* deceased
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Fig. 2 Time evolution of the Nusselt number in the case 
of Nx = 3 and Ny = 1 for Ki = 8.

Fig. 3 Time evolution of (a) total kinetic energy and kinetic
energy of (b) the sheared flow K0, (c) K1,1, (d) K2,1, and
(e) K3,1 in the case of Nx = 4 and Ny = 3 for Ki = 8.

Fig. 4 Time evolution of the Nusselt number in the case of
Nx = 4 and Ny = 3 for Ki = 8.
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