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Abstract

An improved formalism for flowing two-fluid equilibria with non-uniform density is developed in the limit of no
dissipation. The system for axisymmetric equilibria can be expressed using second order differential equations for the
stream functions of the generalized vorticities of the electron and ion fluids plus an algebraic equation for the density.
These simultaneous equations have six arbitrary functions for the stream functions of poloidal flows, the specific
entropies and the generalized enthalpies for the electron and ion fluids. It is found that the type of the equation for the
ion generalized vorticity is elliptic (hyperbolic) when the poloidal ion flow speed is less (larger) than the sonic speed.
This property is different from the single-fluid model. As significant poloidal ion flow may exist even in the present
experiment, this difference is getting important.
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It has been shown that two-fluid effects are important in
many cases such as stability of a high beta plasma [1], relax-
ation of a flowing high beta plasma [2,3] and equilibrium of a
flowing plasma [4]. In particular it was found that the two-
fluid effect can be significant depending on the effective size
of gradient of physical quantities, the beta value and how
close the flow speed is to the ion diamagnetic drift speed [4].
Unfortunately because of the complexity of this system, com-
putational modeling to date has assumed the density is uni-
form and has paid attention mainly to the effect of flow. The
formalism to analyze a flowing two-fluid equilibrium with
non-uniform density in the limit of no dissipation was devel-
oped in [5]. Recently we found an improved way to treat the
entropies for the electron and ion fluids. The equation for
axisymmetric equilibria can be expressed using second order
differential equations for the stream functions of the general-
ized vorticities of the electron and ion fluids plus an algebraic
Bernoulli equation for the density. These simultaneous equa-
tions have six arbitrary functions for the stream functions of
poloidal flows, the specific entropies and the generalized
enthalpies for the electron and ion fluids. In this paper an
improved formalism for flowing two-fluid equilibria with
non-uniform density is presented. We also give a discussion
of the changes in the class of the governing equations as the
ion poloidal flow speed increases. This property is quite dif-

1. Introduction ferent from the single-fluid model [6].

2. Basic equations

Throughout this section, we are concerned with a gener-
al multi-fluid. Its equilibrium is governed by the following
system of equations.

where α and γ denote the species and the adiabatic constant,
respectively, and Tα is the temperature in the energy unit. Rα

and Qα represent the visco-resistive force and the heat flux,
respectively which will be neglected in the equilibrium
analysis of Sec.3.

Introduce, for each species, the specific entropy sα (per
particle) as
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where CD is a dimensional constant. By utilizing (2.6), (2.1)
and (2.4), the equation of energy transfer (2.3) can be written
as

Since this equation shows that the specific entropy sα is
dimensionless, CD has a dimension of [CD] = [nγ-1T-1]. The
equation (2.6) shows that the temperature or the enthalpy can
be expressed in terms of pα and sα. Thus, the specific
enthalpy (per particle) hα can be written as a function of pα

and sα, which is the canonical form of the species enthalpy,

Note that from (2.8) the familiar thermodynamic relations
follow:

For later convenience, we write here the expressions for hα

and Tα in terms of sα and nα,

We now return to the equation of motion (2.2). Introduce the
generalized momentum Pα and its vorticity Ωα as in Ref.3

where A is the vector potential, i.e. B = ∇ × A. Then, using
the vector identity (uα • ∇)uα = ∇(uα

2 /2)−uα × ∇ × uα, (2.2)
becomes

where the generalized enthalpy Hα is defined by

VE is the electrostatic potential, i.e. E = −∇VE and the follow-
ing relation is used.

3. Axisymmetric flowing two-fluid equilibri-

um

Henceforth, we limit attention to equilibria of a two-
fluid composed of hydrogen-like ions and electrons and
assume that charge quasi-neutrality (ni ≈ ne = n) holds. To
reach equilibrium, the dissipation is necessary. The thermo-
dynamics, however, shows that there are many cases that the
dissipation itself is not important to describe some equilibri-

um properties. So we assume that the visco-resistive force Rα

as well as the heat conduction ∇ • Qα are negligible in the
equiblirium. Then, the equilibrium equations are from (2.1),
(2.5), (2.7) and (2.13),

We adopt here cylindrical coordinates (R,φ,Z) and
restrict our attention to axisymmetric equilibrium where any
physical quantity does not depend on the coordinate φ. The
divergence-free quantities such as B, nuα, and Ωα can then be
expressed using their stream functions as

where ψm, ψi, ψe, Ψi, Ψe are the desired stream functions and
φ̂ is the unit vector in the toroidal direction. A fact that there
is no toroidal component of (3.2) implies that ψα is an arbi-
trary function of Ψα, the principal surface function for
species α, i.e.

Applying (3.9) into (3.3) shows that sα is an arbitrary func-
tion of Ψα, i.e.

As seen from (2.9) and (2.10), it is more convenient to intro-
duce a new function wα(Ψα) defined by

Note that wα(Ψα) has a statistical meaning; it is the “number
of microscopic state per particle” recalling Boltzmann’s law
S = klnW. In terms of it the temperature is written as

Taking the inner product of (3.2) with Ωα shows that Hα is an
arbitrary function of Ψα, i.e.

In the following treat the electron as mass-less. To aid
numerical computation a set of dimensionless variables is
defined. These are based on the system length scale Rr, the
reference magnetic field Br and the reference density nr.
These give the reference Alfven speed VA = Br /   µ0minr as in
[4]. Then the closed system of equations governing axisym-
metric flowing two-fluid equilibria is given by three equa-
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tions. The first two arise from the transverse (to Ωα) compo-
nents of the equations of motion for electrons and ions:

where S* = Rr µ0e2nr/mi, x = R2/2 is new radial coordinate
and the prime denotes differentiation with respect to Ψα.

The third equation arises from the sum of the parallel (to Ωα)
components of the two equations of motion, i.e. a Bernoulli
relation,

Of course, any other physical quantity can be expressed in
terms of the principal surface functions Ψe and Ψi. Note that
the first term of the Bernoulli relation (3.16) is just sum of
the enthalpies he + hi in dimensionless expression and the
term proportional to Ψi − Ψe results from the ion toroidal
flow while the third term is due to the ion poloidal flow.

Examine the class of the differential eqs. (3.14) and
(3.15) for the principal electron and ion surface variables Ψe

and Ψi, respectively. The type of (3.14) which comes from
Ampere’s law is clearly elliptic. Noting that some of the sec-
ond derivatives result from the gradients of the last term in
(3.16), the second order derivatives in (3.15) can be written
as

where

Szz = 1 + MZ
2 (1 − Mp

2)−1, Szz = 2xSzz and
Szz = −2  2xMZMR (1 − Mp

2)−1.

Here

and Mp
2 = MR

2 + MZ
2. Noting the temperature Tα = nγ-1wα

(Ψα), MR and MZ can be written as

MR = uiR [γ (Te + Ti)]−1/2 and MZ = uiZ [γ (Te + Ti)]−1/2.

These are the Mach numbers of the poloidal components of
the ion flow. Thus the type of (3.15) is determined by the
sign of the following quantity

When the poloidal Mach number is less than unity, Mp < 1
(i.e. uip <   γ (Te + Ti)/mi in dimensional expression), the type
of (3.15) is elliptic while when the poloidal Mach number is
larger than unity, Mp > 1 (i.e. uip >   γ (Te + Ti)/mi in dimen-
sional expression), the type of (3.15) is hyperbolic. This
property is different from that of the single-fluid model [6] in
the following two points:

(1) The above ratio does not depend on the magnitude of
the poloidal magnetic field.

(2) The ratio depends on the adiabatic constant γ.

4. Summary and discussion

An improved formalism for flowing two-fluid equilibri-
um with non-uniform density is developed. The governing
equations are given by (3.14), (3.15) and (3.16). Equation
(3.14) is always elliptic (assuming massless electrons) while
eq.(3.15) is elliptic (hyperbolic) when the poloidal ion flow
speed is less (larger) than the sonic speed. This property is
quite different from the single-fluid model. As significant
poloidal flow may exist in JT-60U [7], this difference will be
important.

Presently we are solving the 1D case of the foregoing
equilibrium equations including poloidal flow as well as
toroidal flow to compare the NSTX equilibrium and to clari-
fy the importance of two-fluid effects.
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