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Abstract

The density around the thermal barrier in a tandem mirror is sustained to be much lower than that in the central
cell experimentally, which suggests that the ions trapped in the thermal barrier potential escape from there rapidly.

Although the mechanism of radial loss of ions trapped in the axisymmetric end-mirror cells are unknown in the
present tandem mirror experiment, the electrostatic potential has been measured to be not axisymmetric around the
plug region.

Because a numerical calculation reveals that the ion orbits trapped in a non-axisymmetric electrostatic potential
(with many high m azimuthal modes around the plug) have a chaotic behavior, the non-axisymmetric electrostatic
potential can be a candidate of a large ion radial loss in the axisymmetric end-mirror cells.
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1. Introduction

Although the tandem mirrors have revealed several
unknown mechanisms on plasma confinement in an open-
ended magnetically confinement system, one of a major
purpose of a tandem mirror to find the mechanism of the plug
and thermal barrier potential formations has been solved by
ourselves theoretically [1,2,3].

Figure 1 shows the numerical results of a Monte-Carlo
simulation [1,2,3], where the following electron population
and ion loss are required to obtain the results, i.e., the
population of electrons with two temperatures (cold
component Tec and warm component Tew) in the central cell
for the deep thermal barrier potential formation, where the
standard notations are used through this paper, a non-
Maxwellian electrons with different Te|| and Te⊥ in the plug
region for a plug potential formation, and the rapid loss of
ions trapped in the thermal barrier potential for the thermal
barrier potential formation. The parameters adopted in Fig. 1
are not contradictory to the observations in the experiments
of the plug potential formation in the GAMMA10 tandem
mirror [4].

It is seen that the plug potential has a sufficient height
to confine the ions from the central cell because e(φp – φi)/Ti

~– 3.2 in Fig. 1(a) and e(φp – φi)/Ti ~– 2.4 in Fig. 1(b), while
ion density gradually decreases from z = zi toward z = zm,
which clearly satisfies the relation ni(zi) >> ni(zb) >~ ni(zp),

where zp is the axial position at local maximum of
electrostatic potential.

Corresponding author’s e-mail: katanuma@prc.tsukuba.ac.jp

Fig. 1 Numerically obtained axial profiles of electrostatic
potential and ion density in the plug/thermal barrier
(end-mirror) cell. Here (a) is the case τloss/τD = 1.8 × 10-1

and (b) is τloss/τD = 1.8 × 100.
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The ion loss time is assumed as τloss/τD = 0.18 in Fig.
1(a) and τloss/τD = 1.8 in Fig. 1(b), where τD is the Coulomb
deflection times defined as τD ≡ mi Ti

3/2/( 2 πn0e4 lnΛii).
Radial loss of ions, which is included in this numerical

calculation as τloss , is necessary for steady state potential
formation. In GAMMA10, the plug/barrier potential structure
can be sustained during 150 msec and no ion filling into the
thermal barrier region has been observed [5]. This strongly
suggests the existence of an ion radial loss in the plug/thermal
barrier cell in GAMMA10 experiments.

The open-ended system such as a tandem mirror does
not have any magnetic surfaces, which is a different point
from a closed system such as a tokamak. The cross section
of a magnetic flux tube, therefore, does not necessarily
coincide with the equi-contour surface of an electrostatic
potential, where experimental data on the equi-contour
surfaces will be shown later in this paper.

The shape of a magnetic flux tube and the magnitude of
an electrostatic potential on the flux tube are illustrated in
Fig. 2, where the GAMMA10 has an axisymmetric magnetic
field in the end-mirror cell in Fig. 2(a). Because a plug
potential is created by electron cyclotron resonance heating
(ECRH) mainly the cross section of equi-contour of the
electrostatic potential around z = zp is generally non-
axisymmetric as seen in Fig. 2(b) depending on the radiation
pattern of µ-wave and the absorption rate at the resonance
surface around [5].

2. Ion radial loss in the thermal barrier

region

In order to investigate an ion radial loss due to a non-
axisymmetric electrostatic potential we adopt a model of
electrostatic potential profile in Eq. (1), where the axial profile
on axis (ψ = 0) is shown in Fig. 3.
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Here g(z) = –A(z – a)(z – b)2 with a > b, where z = zb = b is
the coordinate at the thermal barrier and z = zp = (2a + b)/3
is the coordinate at the plug, A is a normalization factor to be
g(zp) = 1, i.e., A = 33/(4(a – b)3). The flux coordinates (ψ, θ,
z) are adopted in Eq. (1), where magnetic field is represented
by B = ∇ψ × ∇θ. A long thin approximation to the magnetic
field lines is assumed to calculate magnetic field lines and its
curvatures at arbitrary point (ψ, θ, z) in order to trace ion

orbits in the following [6,7,8]. The half width of electrostatic
potential ψ0 in Eq. (1) is given as ψ0 = 1/2B(z = zb) × 102

(Gcm2).
We are interested in the ion radial transport without

Coulomb collisions so that only the ion orbits are traced in
the end-mirror cell of GAMMA10. Ions are distributed at t =
0 at (r = 5cm, z = zb) with the same energy of 100eV but
different pitch angles from 0 to π/2.

Figure 4 shows the results of ion orbit calculation when
only m = 3 perturbation is added to the axisymmetric plug
potential in Eq. (1). The ratio φ̃ /φp is the perturbation
amplitude divided by the axisymmetric amplitude of
electrostatic potential (see Eq. (1) and Fig. 3). A large
amplitude of m = 3 perturbation exists at z = zp in Fig. 4,
where eφB/Ti = 1.5. Figure 4(b) is the Poincare map at z = zb

of ion orbits, where each dot represents a locus of test ions at
the position passing through z = zb until t = 5msec. Even if

Fig. 2 Magnetic flux tube of the plug/thermal barrier cell of
GAMMA10 (a), and the magnitude of an electrostatic
potential on the magnetic flux tube (b).

Fig. 3 Model of electrostatic potential axial profile used in the
calculation of ion orbits.
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large ion drifts from r = 5cm initial radial position exist, many
ions have regular orbits. As long as a single m mode
perturbation is added to the axisymmetric electrostatic
potential around plug region z = zp , almost all the ion orbits
are regular.

On the other hand, the case of ∑ m ⇒ ∑11
m=3 in Eq. (1) is

plotted in Fig. 5. Here φ̃ /φp = 0.08 per each perturbed m mode
was added to the axisymmetric electrostatic potential z ≥ zb.
Equi-contour surfaces of electrostatic potential at z = zp is
plotted in Fig. 5(a), where eφB/Ti = 1.5. The small irregular
perturbations are seen in the equi-contour surfaces of potential
in Fig. 5(a). The Poincare map at z = zb of ion orbits in the
electrostatic potential of Fig. 5(a) is plotted in Fig. 5(b) at t =
5msec. Under this electrostatic potential profile many ions
have irregular motion, i.e., chaotic orbits.

Ion orbits become chaotic under the existing of many
mode perturbations of electrostatic potential around plug as
seen in Fig. 5. The mean square displacement 〈∆r2〉 of ions is
defined as
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Here ri is the th test ion radial position mapped at z = zb. If
ions have a random walk process, 〈∆r2〉 will be proportional
to time t, in the case of which ion radial diffusion coefficient
D can be defined as D ≡ 〈∆r2〉/t.

Although it is known that ions under a chaotic motion
have a sub-diffusion process but not a simple diffusion
process, it is interesting to investigate the ion diffusion under
the electrostatic potential profile such as that in Fig. 5(a). In
GAMMA10 we estimate that the ion radial diffusion in the
thermal barrier region is roughly D >~ 5 × 103cm2/sec, because
collisional filling time of passing ions with ni ~– 1011/cm3 and
Ti ~– 100eV into the thermal barrier is about several msec and
so the radial diffusion time of ions trapped there is
comparable to the collision filling time in the steady state,
i.e., D ~–

sec

〈 〉
× −
( )5 cm

5 10

2

3 . Now we introduce a target diffusion
coefficient Dtarget = 5 × 103cm2/sec. That is, the purpose here
is to make clear that how much amplitude of electrostatic
perturbation causes an ion radial diffusion of Dtarget.

The radial diffusion coefficient measured by a mean
square displacement of test ions in the electrostatic potential
in Fig. 4(a) is about 102cm2/sec which is much smaller than
Dtarget. The case that many modes perturbation is added to an
axisymmetric electrostatic potential such as in Fig. 5(a),
therefore, is calculated hereafter.

Figure 6 displays the ion mean radial displacement in
the electrostatic potential where the perturbations from m = 3
to 11 modes were added to the axisymmetric electrostatic
potential in Eq. (1). Here eφB/Ti = 0.5 is chosen, in which
ions drift roughly 2π/9 in the θ-direction per one bounce axial
motion. Many ions with different pitch angles resonate with
the electrostatic perturbation and their motion become chaotic
as seen in Fig. 5(b). It is found that the ion radial diffusion
coefficient satisfies D >~ Dtarget when the ratio φ̃ /φp >~ 0.08 in

Fig. 6(a).
The electrostatic potential at the thermal barrier z = zb is

measured by a beam probe in GAMMA10 [5,6], where Fig.
7 is a latest result of GAMMA10. The radial profile of the
electrostatic potential depends strongly on the radiation
pattern of externally injected µ-wave for ECRH at ω = ω ce

fundamental resonance surface around the plug z = zp. By

Fig. 4 Equi-potential surfaces at zp in the case of which an m =
3 perturbation is added (a), and a Poincare map at z = zb

of ion orbits (b).

Fig. 5 Equi-potential surfaces at zp in the case of which the
perturbations from m = 3 to m = 11 are added to an
axisymmetric electrostatic potential (a), and a Poincare
map at z = zb of ion orbits (b).

Fig. 6 Time evolution of test ion mean square displacements.
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comparison of the radial profile in Fig. 7 with that in Fig.
5(a) the high-m modes perturbation in the electrostatic
potential in Fig. 7 can cause the ion radial transport of order
of Dtarget.

Fig. 7 The equi-contour surface of an electrostatic potential at
the thermal barrier z = zb measured by beam probe,
where this figure is reprinted from Fig. 1(b) in Ref. [5].

3. Summary and discussion

The mechanism of ion radial loss in the plug/thermal
barrier cell was proposed. That is, non-axisymmetric
electrostatic potential added to the axisymmetric one leads to
a large ion radial transport.
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