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Abstract

A robust MHD code was developed to study the behavior of hot plasma with steep density and/or pressure gradi-
ent. MHD equations included in thermal conductivity, viscosity and resistivity which are strongly dependent on plasma
parameters had to be solved; using splitting fractional method an advection (convection) equations were solved by the
Constrained Interpolation Profile (explicit-CIP), and Poisson equations in the non-advection terms were solved by
Alternating Direction Implicit scheme (ADI). Total time step was marching by Runge-Kutta method. The code was
examined for simple MHD shock tube problem. The differences of the magnetic compression and the density ratio
ahead and behind the shock front from the calculation results were within a few percents when the density and/or pres-
sure ratios were less than 103 and 105, respectively.
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Recently pellet injection and/or super-sonic gas jet are
used as fuelling methods of hot plasma in large experimental
device. These fuelling may change the characteristics of plas-
ma confinement. Therefore, it is interesting to study the
behavior of hot plasma under these fuelling conditions. To
solve these phenomena numerically the code has to include
in the complex atomic processes and it can treat non-thermal
equilibrium.

As already known, fluids model such as MHD only
treats quasi-thermal equilibrium states. Therefore, MHD code
has the limitation to solve these drastic states, and it cannot
treat the transition phenomena like plasma just after thick
fuelling. However, in general the duration of the transition
processes are shorter than that of interested macroscopic
plasma behavior e.g. a “snake” after pellet injection.
Therefore, the macroscopic density diffusion process in
whole plasma after transition processes can be treated as
MHD phenomena. For this purpose a MHD code has to have
the robustness in a large density and/or pressure gradient
(ratio) within a few calculation cells.

We have already developed a single fluid MHD code [1]
using normal explicit constrained interpolation profile
scheme (explicit-CIP) [2]. CIP has robustness under severe
conditions such as density ratio of 103 within a few cells.
This code could treat ideal MHD, however, thermal conduc-
tivity, resistivity and viscosity were constant in space and
time, and viscosity and thermal conduction were solved by an
explicit method. Therefore, it could not be applied to the

1. Introduction problem with wide temperature range and it had the limita-
tion to use. 

In this paper, we have developed new code to treat the
variable plasma properties. Using splitting fractional method
we introduce a linear interpolation at the shock front to solve
the advection equation stable and we apply semi-implicit
method to solve the pressure equation, also full implicit
method to solve the viscosity and thermal conduction equa-
tions because of numerical stability.

2. Governing equations for a single fluid

model

The governing equations of a single fluid for MHD
model are as follows, 
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(ρ, p: density and pressure, u: velocity [vector], τij :
stress tensor, i, j and k are indices of space, µp: viscosity of
plasma, Rp: gas constant for plasma = 2Rgas, γ : ratio of specif-
ic heats η : resistivity, q: thermal flux [vector], λp: thermal
conductivity, Φ : dissipation function due to stress in a fluid). 

These equations are derived from the mass, momentum
and energy conservation laws, and Maxwell equations. Using
splitting fractional method the advection equations are solved
first by CIP method [1], and Poisson equations in the non-
advection terms are solved by ADI method. ADI is uncondi-
tional stable in two dimensions [3]. The time evolution of
one full step is marching by Runge-Kutta method. The order
of time accuracy is chosen 1 to 4 as an input parameter; usu-
ally we choose second or fourth order. Thermal conductivity
depends on the magnetic field direction (anisotropy), other
properties are assumed to be only a function of plasma
parameters (isotropy). The plasma properties used in the code
are described in ref. [4].

The CIP and ADI routine were tested independently,
and after that we combined them to make full-MHD code.
The completed code was two-dimensional. For numerical
example, we choose a Riemann problem of ideal MHD shock
tube, which was introduced by G. Sod [5] firstly. The solu-
tion of this problem consisted various MHD shocks and it
was already analyzed numerically by some groups [6-8]. The
initial value of this problem is as follows,

The dimensionless initial left and right states, which are
denoted by l and r are
ρl = 1, ul = 0, pl = 1, Bx = 0.75, By = 1, γ = 2, and
ρr = 0.125, ur = 0, pr = 0.1, Bx = 0.75, By = −1, γ = 2,
respectively.

Initial discontinuity is located in the middle of computa-
tional domain at the direction of X, and all states are uniform
in the direction of Y. Using this 1D initial states, numerical
solution, which were obtained for Nx = 800 and Ny = 5 grid

Fig. 1 Calculational results of a coplanar MHD Riemann
problem, (a) density, (b) pressure, (c) velocity normal
to the shock front, (d) velocity parallel to the shock
front and (e) magnetic field parallel to the shock front.
Grid numbers of calculation domain are Nx = 800, Ny
= 5, and horizontal axis shows the grid of X-direction.
The results of 1000 time steps at CFL = 0.4 are shown.

Fig. 1(a) Fig. 1(b)

Fig. 1(c) Fig. 1(d)

Fig. 1(e)

3. Numerical test
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Table 1  Various initial conditions for shock calculations.

points with ∆x = 1, ∆y = 1, CFL = 0.4, are shown in Fig. 1
after 1000 time steps; it is necessary to meet Courant-
Friedrihs-Lewy (CFL) condition due to explicit-CIP scheme.
The solution consists of following waves; the waves moving
to the left are a fast refraction wave (denoted by FR in the
figure), and a compound wave (SM), which consists of a
intermediate shock and attached to it a slow refraction wave;
the waves moving to the right includes a discontinuity (C), a
slow shock (SS), and a fast refraction wave (FR). The
obtained result is very similar to that of ref [6-8]. Using Lax-
Wendroff and/or MacCormack without artificial viscosity or
TVD we could not solve these waves precisely. SM and SS
are sharply resolved by a few points, however, the disconti-
nuity is resolved by more than 10 points, and between SM
and C some numerical oscillations are found in this solution.
It seems that the numerical oscillations are due to the pres-
sure term, which is solved by semi-implicit method this time.
To avoid these oscillations we have to remake this using a
full implicit method such as CIP-combine and unified proce-
dure (C-CUP) [9]. This is very near future work. 

To simulate dense plasma diffusion such as MHD
behavior after pellet ablation, the robustness for high densi-
ty/pressure gradient of this code has to be demonstrated. We
have solved high Mach number problems as above. This
shock waveform is the same as the shock tube solution of
neutral gas. Choosing γ = 5/3, Bx = 0, and By = 1.0, we can
compare magnetic compression with the density ratio ahead
and behind the shock front; two rates should be the same
value at the ideal perpendicular magnetic shock. Various ini-
tial states to create the shocks are shown in a Table 1. Also,
the density ratio and magnetic compression ahead and behind
the shock front from calculation results are shown in the right
column. The magnetic compression is limited to the range 1
< B2 / B1 < (γ + 1)/(γ − 1), where B1 and B2 are the magnetic
field strength ahead and behind the shock front, respectively,
i.e. B1, B2 = Bx

2 + By
2 . For γ = 5/3 the upper limit of this

compression rate is 4. We tried to confirm the effect of the
plasma properties on the shock formation. Calculating ther-
mal conductivity, viscosity and resistivity, which depend on
the plasma parameters, we can also compare the density ratio

with the magnetic compression ahead and behind the shock
front. These cases are denoted by “yes” in each plasma prop-
erties of Table 1, while the other cases are denoted by “no”,
in which thermal conductivity, viscosity and resistivity are
constant in time and space.

Usually Mach number represents the shock strength in
neutral gas, however the magnetic compression also shows
the shock strength in MHD case. Comparing the results of
no.3 and no.4 in the Table 1, it is found that the shock
depends on not only the upper stream plasma parameters but
also downstream plasma parameters because of the sound
speed of downstream region. In each case the magnetic com-
pression is good agreement with the density ratio, when the
magnetic compression is below than 1.5−2.0. These results
are denoted by “good” in the status column of Table 1.
However the discrepancy between the density ratio and the
magnetic compression becomes large when the magnetic
compression is large. Numerical oscillations appear to follow
behind shock as the magnetic compression is approaching the
upper limit 4; moreover the magnetic compression is over 4
in one case. Those results are denoted by “poor” and “bad” in
the status of Table 1, respectively. Although the calculation
results were broken in those cases, the numerical results have
no negative density and pressure value and the errors in the
Table 1 are also within a few percent. The limitation of valid
results region of this code would be as follows, 

With the adjacent grid the density ratio is below 103, and
the pressure ratio is than 105 corresponding to the density
ratio.

There is no need to concern above limitation as far as
we treat typical experimental plasma parameters of magnetic
confinement device. Therefore, it is expected that this code
can treat the behavior of plasma with high density locally
such as after pellet ablation and/or supersonic gas injection.

There is a slight difference in error between the results
of no.15 and no.16. Initial condition of the temperature is 100
eV, therefore the viscosity, which is proportional to the mean
free path is higher than other cases. In general the effect of
plasma properties on the shock formation was not found
clearly in all cases, this was good while it means the calcula-
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tion of thermal conduction, viscosity and resistivity does not
do anything bad. In reality the shock should disappear itself
with increasing time marching due to dissipation. For exam-
ple, when high temperature plasma would be selected in the
shock calculation, it might be possible to confirm the effect
of thermal conduction and viscosity even though we need
huge computational domain and time steps.

4. Conclusion

The robust MHD code was developed. Although the
pressure term was solved by semi-implicit method, this code
could handle the large density and/or pressure gradient (ratio)
within a few calculation cells without any negative density
and pressure.

Test results of MHD shock tube calculation showed that
it could calculate MHD behavior under the initial density
ratio of 103 and pressure ratio of 105 within a few percent
error.

It was found that there are numerical oscillations
between severe states; therefore, the improvement would be

necessary for this code. This is near future work.
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