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Abstract

The potential characteristics of spherical tokamak configurations with current hole are investigated from the
point of view of magnetohydrodynamic (MHD) equilibrium and stability. The effect of the toroidal shear flows is also
considered by using a modified Grad-Shafranov equation. Linear and nonlinear stability for low-n kink modes and
intermediate-n ballooning mode is analyzed by means of numerical simulations.
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1. Introduction

In conventional large tokamak experiments such as JT-
60U [1] and JET [2], a very good confinement, which is
named the internal transport barrier (ITB), is observed. In the
ITB tokamak the pressure gradient is mainly sustained in the
edge region, and becomes almost flat in the core region, on
the other hand. As an extreme of ITBs, an unique
configuration has been observed recently. The plasma current
goes to zero around the magnetic axis, and the plasma is
confined at very high beta. This is named ‘current hole’. Such
configurations attract a great deal of attention as a candidate
of fusion core plasma, because high beta plasma confinement
can be obtained with large bootstrap fraction.

In the past several years, the low-aspect-ratio, or
spherical tokamak (ST) concept [3] has been studied
intensively, since good confinement and stability at high beta
can be obtained experimentally. Therefore, the capability of
ST configurations with current hole should be examined in
order to explore the reactor-sized STs in future.

In this paper, we investigate the properties of the
equilibrium and the stability of STs with current hole.
Furthermore, the effect of plasma shear flow due to the ITB
is discussed.

2. Equilibria

An axisymmetric equilibrium is obtained analytically by
using the Grad-Shafranov equation,
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ψ and jθ are the magnetic flux function and the toroidal

current, respectively. Two arbitrary functions p and F are
expressed that p = p(ψ) and F = F(ψ) = rBθ, where p and B
are the plasma pressure and the magnetic field, respectively.
By specifying p and F, the Grad-Shafranov equation can be
solved under the appropriate boundary conditions. The
inversion of the elliptic operator ∆* is carried out by means
of an iterative method with keeping the value of the total
current fixed.

The ST configurations with a current hole can be
calculated by choosing the functions p and F as suitable
forms. In the current hole, both p and ψ are flat and jθ = 0.
Therefore, by setting p′(ψ) and F ′(ψ) to go zero at both the
magnetic axis and the edge, the current hole configurations
can be modeled. We use a power of trigonometric functions
for them to insure the continuity and smoothness of the
quantities at the boundaries.

An example of numerical solution of (1) for parameters
of ST with current hole is shown in Fig. 1. The radial profile
of the pressure, the toroidal current, and the safety factor q
are plotted in Fig. 1(a), and the contours of the poloidal flux
are drawn in Fig. 1(b). The parameters of the equilibrium is
that the aspect ratio A = 1.5, the plasma beta at the current
hole β0 = 20%, and the minimum of the safety factor q0 =
2.76.

To investigate the effect of the plasma flow on the
magnetohydrodynamic (MHD) stability, we consider the
equilibria, or steady state, problem of an axisymmetric
tokamak with stationary shear flow. The flow considered here
does not change in time, but varies in space. In this paper, we
investigate a specific case that only toroidal shear flow exists.
More general treatment, including poloidal component of
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flow, is our future interest.
Now we start from the force balance equation of MHD

fluid,
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with the centrifugal force, which is caused by the existence
of the toroidal flow.

In the same manner as the derivation of the normal Grad-
Shafranov equation (1), we obtain a couple of modified Grad-
Shafranov equations,
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where the subscript of p and ψ denotes the partial derivatives.
Here, F = rBθ and f = vθ/r are found to be a function of ψ, or
F = F(ψ) and f = f(ψ), however, p no longer depends on ψ
alone for vθ ≠ 0. Therefore, (3) and (4) have to be solved
simultaneously for the unknown variables ψ and p, specifying
arbitrary functions F and f.

To obtain more perspective form for numerical
computation, (3) and (4) are rewritten as,
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The numerical solution proceeds in two steps. First, (5)
is solved in the same manner as the normal Grad-Shafranov
equation described above with a given pressure profile. Then,
the pressure profile is adjusted by using (6) and (7). For the
convenience of numerical solution, we do not directly
integrate the pressure gradient (6) and (7), but solve an elliptic
partial equation, which is obtained by taking the divergence
of (6) and (7). These two steps are mutually iterated until the
converged solution ψ and p is obtained. An example of the
solution is shown in Fig. 2. Here, we model the toroidal shear

flow to exist only in the region where the current exists. The
maximum Mach number is about 0.03 for this case. All the
other parameters used here are the same as the stationary case.
The field variables do not differ so much from the stationary
case.

3. Linear stability

To investigate the MHD stability of the equilibria
obtained in the last section, we have executed nonlinear MHD
simulations in a full toroidal geometry. The governing
equation is a standard set of MHD equations,
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where the used variables are following usual definitions,
j = ∇ × B, and E = –v × B. In numerical solution, the
derivatives are expressed by using a finite difference method,
and the time integration is done by the Runge-Kutta scheme.

Before executing the nonlinear simulations, linear
stability is examined by using a linearized version of (8)-(11).
The result shows that the equilibrium is linearly unstable for
several modes.

The growth rate of the instability modes for each toroidal
Fourier component is shown in Fig. 3, where n is the toroidal
mode number. The growth rate is calculated from the
perturbations in the magnetic energy. The higher-n
components are suppressed by assuming large dissipation, or
affected much by the number of numerical grids. Therefore,
we focus on only low-n modes, and use 128 × 128 numerical
grids in the poloidal cross section in this paper.

In Fig. 3, the growth rate for the case with flow is plotted
together. The result shows that the existence of the toroidal
flow tends to make each mode more unstable. However, there
are some components that is not affected by flows so much,

Fig. 1 Numerical equilibrium of ST with current hole.
(a) radial profile of p, jθ and q, (b) poloidal flux.

Fig. 2 Birds-eye view of flow profile in poloidal cross section.
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such as the n = 12 and n ≤ 3 modes.
The poloidal mode structures are shown in Fig. 4 for the

n = 1, 6, and 12 components. It can be seen that the dominant
poloidal component of the n = 1 mode is m = 3, where m is
the poloidal mode number. Analysis of the driving source of
the instabilities by using the energy principle shows that this
3/1 mode is a kind of current-driven (kink) instabilities.
Another feature of Fig. 4 is that the structures of the higher-n
modes are localized poloidally, which implies that these
modes are categorized into the ballooning mode.

4. Non-linear simulation

To investigate further the overall dynamics of plasma, it
is necessary to execute nonlinear simulations by solving
directly (8)-(11). We use a finer numerical mesh with 256 ×
256 grids in poloidal cross section, and 64 grids in toroidal
direction, to follow the mode couplings among as many
modes as possible. A low-pass filtering technique is applied
to remove high-wavenumber components. Since the initial
flow causes no qualitative change in the linear instabilities,

nonlinear simulation is done only for the case vθ = 0 as the
initial condition.

Figure 5 shows the temporal changes in the poloidal
pressure profile. Simulations are executed for two
eigenmodes, the n = 1 (Fig. 5(b)-(c)) and the n = 6 (Fig. 5(d)-
(e)) modes. One can see that for both cases the shape of the
cross section varies reflecting the poloidal mode structures of
the linear eigenmode in the beginning ((b) and (d)), but a lot
of smaller scale components appear as a result of the
nonlinear couplings. The configuration goes into turbulent and
destroyed in the end ((c) and (e)). So far as we can see from
this result, there are no indications that the toroidal
confinement recovers after that, which can be seen in our
previous simulations for conventional STs without current
hole [4-5]. However, it is necessary to survey simulation
parameters in wider range for better understanding of the
nonlinear behavior.

5. Summary and discussion

The MHD equilibria of ST configurations with a current
hole have been obtained numerically by solving the modified
Grad-Shafranov equation. We have also obtained both
equilibria with and without steady toroidal shear flows.

Linear and nonlinear MHD simulations have been
executed for such equilibria. The linear results show the
growth of the 3/1 kink mode and the higher-n ballooning
modes. The steady toroidal flows make the higher-n modes
more unstable. It is considered that the destabilization is
caused by the centrifugal force. In our calculations, the
plasma pressure profiles tend to be shifted outward under the
existence of toroidal flows, so that the pressure gradient is
more steepened in the low field side.

The preliminary nonlinear simulation result for the case
with no toroidal flows in the initial state shows that a hard
disruption of the configuration occurs. In our previous
simulation result for the internal n = 1 relaxation of a
conventional ST plasma [5], the torus configuration recovers
spontaneously through a closed vortex flow inside the q = 1
surface. Another previous result for the internal reconnection
event [4] also shows a spontaneous recovery of the

Fig. 3 Linear growth rates for each toroidal Fourier
component. Solid and broken lines denote that of the
case with and without flows, respectively.

Fig. 4 Poloidal mode structures of (a) n = 1, (b) 6, and (c) 12
modes.

Fig. 5 Nonlinear time development of pressure profile. (a) t =
0, (b) t = 500, n = 1, (c) t = 620, n = 1, (d) t = 60, n = 6,
(e) t = 320, n = 6 (The time t is normalized by the Alfvèn
transit time.)
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configuration through the magnetic reconnection process
between the internal and external magnetic field. These
previous results seems to imply that STs have good
‘resilience’. However, the nonlinear result in this paper shows
an opposite example. One of the reasons for the discrepancy
might be the existence of the current hole. Because there are
no MHD force balances in the current hole region to sustain
the high beta plasma, the restrictive forces against the
deformations would be small. However, more detailed
nonlinear analysis is our ongoing subject.
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