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Abstract

In our previous paper [Phys. Plasmas 10, 4166 (2003)], we pointed out that the experimental results on the axial
spontaneous magnetic field given by Najmudin et al. [Phys. Rev. Lett. 10, 215004 (2001)] can be explained by our
kinetic model [Phys. Plasmas 8, 329 (2001)]. We also found that the azimuthal magnetic field Bθ given by our kinetic
model is much weaker than the axial spontaneous magnetic field, which is not consistent with particle-in-cell simula-
tion results. In the present paper, we reinvestigate the generation mechanism of the spontaneous magnetic fields from
relativistic Vlasov-Maxwell equations. It is found that the azimuthal spontaneous magnetic field Bθ can be same order
as the axial spontaneous magnetic field if the laser beam self-focus effect is considered. It is also obtained that the
magnitude of the spontaneous magnetic field is proportional to the plasma density for the case of low plasma density,
but is independent of the plasma density for the case of high plasma density.
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Attention to the fast ignition scheme for inertial con-
finement fusion [1] have generated worldwide interest in
interaction of an intense short-pulse laser with plasma [2,3].
Among the various nonlinear effects which may occur in
plasma interacting with intense short-pulse laser, the genera-
tion of spontaneous magnetic field is one of the most interest-
ing and significant problems because the fields could have
considerable influence on nonlinear plasma dynamics, espe-
cially on the collimation of relativistic electron beam. The
extremely high spontaneous magnetic field was observed by
particle simulation in the interaction of ultraintense short
laser pulse with an overdense plasma target [3,4]. Recently,
experiment measurement of the spontaneous magnetic field
are reported by Fuchs et al. [5] and Najmudin et al. [6]. So
far, a number of theoretical models for generation of the
spontaneous magnetic field are suggested [7-16]. It should be
noted that most of works on the spontaneous magnetic fields
is on the basis of fluid scheme. A kinetic generation mecha-
nism for the spontaneous magnetic field driven by the beat
interaction between two electromagnetic field was proposed
by He [17] in 1983. One of the present authors [18] got an
equation for the spontaneous magnetic field in collisionless
plasma by the same method as Ref. [17], but under different
approximation. In Ref. [19], we discussed the spontaneous
magnetic field from relativistic Vlasov-Maxwell equations.

1. Introduction For real intense laser plasma interaction, electrons are
heated by laser beam. One part of electrons are accelerated
into relativistic velocity region, the other part of electrons are
thermal ones. In the other word, there exist two groups of
electron, thermal one with temperature Tte and relativistic one
with temperature Tre. So, the electrons satisfy the distribution
function fα0 = ξ fαM (Tte) + (1 − ξ)fαM(Tre), where fαM(Tte) and
fα M(Tre) are nonrelativistic and relativistic distribution func-
tion respectively, ξ is the ratio of the number of thermal elec-
trons to the total number of electrons. According to above
ideal and including the effect of finite laser beam, in Ref.
[20] we generalized our kinetic model proposed in Ref. [19]
and found that the experimental results on the axial sponta-
neous magnetic field given by Najmudin et al. [6] can be
explained by our kinetic model. In fact, there is only the axial
spontaneous magnetic field measured in Ref. [6].

We pointed out in Ref. [20] that the azimuthal magnetic
field Bθ given by our kinetic model is much weaker than the
axial spontaneous magnetic field, which is not consistent
with particle-in-cell simulation results. In the present paper,
we reinvestigate the generation mechanism of the sponta-
neous magnetic fields from relativistic Vlasov-Maxwell
equations. We got an equation for the spontaneous magnetic
field by the same method as Ref. [19], but under different
parameter region. It is found that the azimuthal spontaneous
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magnetic field Bθ can be same order as the axial spontaneous
magnetic field if the laser beam self-focus effect is consid-
ered. It is also obtained that the magnitude of the sponta-
neous magnetic field is proportional to the plasma density for
the case of low plasma density, but is independent of the
plasma density for the case of high plasma density.

2. Spontaneous magnetic fields

Consider the relativistic Vlasov-Maxwell equations

where the index α(α = i,e) represents ions and electrons

respectively, P0α =   P
→

α
2 + mα

2c2, P
→

α is the momentum, mα is

the rest mass of particle, c is the light speed. The other nota-
tions in Eqs. (1)-(4) are standard.

We split the particle distribution functions up into their
background part nα fα 0, slow-time-scale part fαs (time scale
for spontaneous magnetic field) and fast-time-scale part
fα f (time scale for laser oscillation):

where fα0 = ξ fαM(Tte) + (1 − ξ) fαM(Tte) is the background dis-
tribution function and nα is the particle number density.
Substituting Eq. (5) into Vlasov equation, splitting the elec-
tromagnetic fields up into their slow-time-scale and fast-
time-scale parts, and using Fourier-transform technique, we
have the slow-time-scale electric fields E

→
S
σS(q) (the subscript

“s” means slow-time-scale field, the superscript “σS “(σS =
l,t) represents longitudinal and transverse fields, respectively)
and the spontaneous magnetic fields B

→
S(q) in the Fourier rep-

resentation:

where e is the charge of proton, k = (k
→

,ω), q = (q→,Ω) , the
symbol ∫

(s)
refers to a slow-time-scale motion caused by the

difference beat of two fast-time-scale motions. In Eq. (8), (1
↔ 2) represents the preceding term with the indices 1 and 2
interchanged. The amplitude of the fast-time-scale electric
field E f

σ(k) is defined as follows:

We have the same definition for the slow-time-scale field. In
Eq. (6), ΘS

σ s(q) is the dielectric functions

where ωpα is the plasma frequwncy. The definition of the
notations in Eqs. (6)-(11) can be found in Ref. [19].

For a laser beam with wave number k0 = 2π/λ0 and

intensity I = I0 exp[−2 −2             ], where r(z) and L

are the transverse and logitudinal dimensions of laser beam,
the laser electric field is usually expressed as
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where ε = 0, ±1 for linearly polarized (LP) and circularly
polarized (CP) laser respectively. It should be noted that 
this E

→
L(x→,t) is not correct because it does not satisfy the

Poisson equation ∇·E
→

L = 0. Here we write the field in the
form

By Poisson equation, we have approximately

From Eqs. (13) and (14), considering the expression for the
laser electric fields, after a lengthy calculation, we find the
spontaneous magnetic field for the approximate region 
of vti|q

→
| << Ω << vte |q

→
| (vtα is the thermal velocity of particle.),

and the spontaneous magnetic field under the condition of
vte|q

→
| << Ω << c|q

→
|,

In Eqs. (17) and (18), the subscript “s” has been omitted for
simplicity, and

and the normalized transform is introduced as

Equation (17) had been obtained in our previous paper. From
Eq. (17), we can find that the magnitude of the spontaneous
magnetic field is proportional to the plasma density. But Eq.
(18) shows that the magnitude of the spontaneous magnetic
field is proportional to the plasma density in the case of low
plasma density and is independent of he plasma density for
the case of relative dense plasma density. It should be noted
that Eqs. (17) and (18) are suitable for both LP and CP lasers.

3. Solutions of spontaneous magnetic field

equations

In Ref. [20], we calculated the spontaneous magnetic
field given by Eq. (17) using the experimental parameters in

Ref. [6] and found that the theoretical expectation has a good
agreement with the experiment results given in Ref. [6]. We
here do not pay more attention to the solution of Eq. (17) and
focus our attention to the solution of Eq. (18).

Figure 1 shows the dependence of the magnitude of the
spontaneous magnetic field on the ratio of the number of
thermal electrons to the total number of electrons ξ, where
CP laser with λ = 1.05 µm, I0 = 6.7 × 1018 W/cm2 is used and
the other parameters is given as r(z) = 5λ, L = ∞, plasma den-
sity ne = 0.028nc (nc is the critical density) and Tte = 5 keV.
The temperature of relativistic electrons Tre is determined by
Wilks’s scaling law Tre = 511(γ − 1) keV. It can be seen that
the absolute magnitude of the spontaneous magnetic field

Fig. 2 The dependence of Bz(x = 0, y = 0, z = 0) on the plas-
ma density ne, where CP laser with λ = 1.05 µm, I0 =
6.7 × 1018 W/cm2 is used and the other parameters is
given as r(z) = 5λ, L = ∞, ξ = 0.6 and Tte = 5 keV.
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Fig. 1 The dependence of Bz(x = 0, y = 0, z = 0) on the ratio
of the number of thermal electron to the total elec-
trons ξ, where CP laser with λ = 1.05 µm, I0 = 6.7 × 1018

W/cm2 is used and the other parameters is given as
r(z) = 5λ, L = ∞, plasma density ne = 0.028nc and Tte = 5
keV.
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reduces as the number of relativistic electrons increases.
Figure 2 shows the dependence of the magnitude of the spon-
taneous magnetic field on plasma density ne, where CP laser
with λ = 1.05 µm, I0 = 6.7 × 1018 W/cm2 is used and the other
parameters is given as r(z) = 5λ, L = ∞, ξ = 0.6 and Tte = 5
keV. It is clear that the magnitude of the spontaneous mag-
netic field increases as the plasma density grows up and is
independent of the plasma density as ne is greater than about
0.3nc.

The spatial profile of the spontaneous magnetic field is
shown in Fig. 3 and Fig. 4, where LP laser with λ = 0.5 µm,
I0 = 4.7 × 1018 W/cm2 (The parameters for laser beam is same
as that given in Fuchs et al.’s experiment [5]) is used and the
other parameters is given as r(z) = r0(1 + ar sin(krz))/(1 + ar),
r0 = 4λ, ar = 0.5, kr = 12/λ, L = 5λ, plasma density ne = 0.2nc,
ξ = 0.6 and Tte = 5 keV. The peak magnitude of azimuthal
magnetic field Bθ is about 70 MG, which is consistent with
experimental result given by Fuchs et al. [5]. As shown Fig.
4, the peak magnitude of Bz is about 0.7 MG and much small-
er than Bθ. For the case of CP lasers where ε ≠ 0, Bz should
be enhanced and has the same order of magnitude as Bθ.

4. Summary

The generation mechanism of the spontaneous magnetic
fields is reinvestigated from relativistic Vlasov-Maxwell
equations. It is found that the azimuthal spontaneous magnet-
ic field Bθ can be same order as the axial spontaneous mag-
netic field if the laser beam self-focus effect is considered. It
is also obtained that the magnitude of the spontaneous mag-
netic field is proportional to the plasma density for the case

of very low plasma density, but is independent of the plasma
density for the case of high plasma density.
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Fig. 3 The spatial profile of Bθ(x = 0, y = 0, z = 1.96), where
LP laser with λ = 1.05 µm, I0 = 4.7 × 1018 W/cm2 is used
and the other parameters is given as r(z) = r0(1 + ar

sin(krz))/(1 + ar), r0 = 4λ, ar = 0.5, kr = 12/λ, L = 5λ, plas-
ma density ne = 0.2nc, ξ = 0.6 and Tte = 5 keV. The
magnitude of magnetic field is in the unit of MG.

Fig. 4 The spatial profile of Bz(x = 0, y = 0, z = 0.98), where
LP laser with λ = 1.05 µm, I0 = 4.7 × 1018 W/cm2 is used
and the other parameters is given as r(z) = r0(1 + ar

sin(krz))/(1 + ar), r0 = 4λ, ar = 0.5, kr = 12/λ, L = 5λ, plas-
ma density ne = 0.2nc, ξ = 0.6 and Tte = 5 keV. The
magnitude of magnetic field is in the unit of MG.
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