Parameter Requirements for D-³He Helical Reactors

MITARAI Osamu, SAGARA Akio¹, IMAGAWA Shinsaku¹, TOMITA Yukihiro¹,

WATANABE Kiyomasa¹ and WATANABE Tsuguhiro¹

Kyushu Tokai University, Toroku 862-8652, Japan ¹National Institute for Fusion Science, Toki 509-5292, Japan (Received: 9 December 2003 / Accepted: 12 February 2004)

Abstract

Parameter requirements are studied for D-³He helical reactors with three sizes based on the shifted large helical device (LHD) plasma (the major radius R = 3.6 m) with $R = 14.5 \sim 18.5$ m, and for a compact reactor based on a quasi-poloidal stellarator with R = 10.36 m. To achieve ignition in a D-³He helical reactor with the magnetic field strength $B_o = 6$ T, the confinement should be improved up to >2.4 times larger than the present LHD confinement, and the volume averaged beta $\langle \beta \rangle = 14 \sim 21$ %, the hot ion mode with the peak ion to electron temperature ratio $T_i/T_e>1.5$ and the heating power of 200~300 MW are necessary. The lower beta would be obtained in a larger machine and the neutron power can be reduced to 60 ~ 90 MW for 3 GW fusion power.

Keywords:

D-³He fusion, Helical reactor, Ignition, Low neutron power, LHD, Quasi-poloidal stellarator

1. Introduction

A D-³He fusion is attractive for achieving a safer and cleaner fusion reactor. Therefore, ARTEMIS studies had been conducted using the field reverse configuration (FRC) for achieving D-3He fusion by Momota et al. [1]. Recent demonstration of feasibility of a D-3He spherical tokamak reactor [2] also urges studies of a D-3He helical reactor, which has not been explored yet. To see the future prospect of LHD type experiments and other type of helical machine, it is important to study parameter requirements in a D-³He helical reactor. In contrast to a D-3He tokamak system requiring the large plasma current more than 50 MA, the possible plasma current-free operation in a helical system is advantageous because of no risk of the disruption. In this paper, we examine parameters to be necessary for D-3He helical reactors based on the 0-dimensional analysis and the international stellarator scaling (ISS95 scaling) [3] for three sizes of helical reactors and a quasi-poloidal stellarator (QPS) [4].

2. Formalism and ignition control algorithm

We have used the 0-dimensional particle and power balance equations for D-³He, D-D and D-T fusions. The hot ion mode of $T_i/T_e = 1.5$ is assumed in the power balance equation. As clear transition from L to H mode in LHD has not been observed, the density limit has been used for control of the heating power [5], which is mainly different from the tokamak reactor analysis. Therefore, the applied external heating power is set to expand the density limit larger than

the operating density by 2 %. Fusion power is regulated by a proportional-integration-derivative (PID) controller with the fusion power signal, and fuel ratio of D and ³He is controlled by a proportional-integration (PI) controller with fuel ratio signal. This D and ³He fuel ratio control is important to achieve the low neutron power mode. We employ the confinement factor γ_{LHD} over the present LHD confinement time of 1.6 \times τ_{ISS95} in this study with τ_{ISS95} being the confinement time given by ISS95 scaling. This ISS95 scaling created for a helical system is the second different point from the tokamak reactor analysis. The effective minor radius \overline{a} expressing the helical plasma makes a helical system analysis similar to a tokamak reactor analysis. All the effective particle confinement time ratios of the deuterium, helium-3, tritium, 14 MeV proton and 3.7 MeV alpha particle to the energy confinement time are assumed to be 2, and the prompt loss of all the fusion products to be zero. The density and temperature profiles are assumed as parabolic. As the beta value is lower than that in ST, ignition is sensitive to the wall reflectivity (R_{eff}), then $R_{eff} = 0.99$ has been chosen.

3. Temporal evolution of the plasma parameters to ignition

D-³He ignition is possible for a helical reactor with R = 14.5 m, $\overline{a} = 2.6$ m, $B_o = 6$ T, and the high beta of $\langle \beta \rangle \sim 18$ %. Confinement factor with $\gamma_{LHD} = 2.4$ provides ignition with the external heating power of $P_{EXT} = 300$ MW for the fuel ratio of D:³He = 2:1, leading to high neutron power of $P_n = 184$ MW.

Corresponding author's e-mail: omitarai@ktmail.ktokai-u.ac.jp

The lower neutron power of $P_n = 61$ MW is achieved after switching the fuel ratio setting value to the helium rich state of D:³He = 0.45:0.55 at 70 sec as shown in Fig.1. The external heating power is lowered to $P_{EXT} = 200$ MW in the case of higher confinement factor of $\gamma_{LHD} = 3$. The final beta reaches $\langle \beta \rangle \sim 21$ %, and the peak electron density n(0) is 3.92×10^{20} m⁻³ and the peak ion temperature $T_i(0)$ is 115 keV. The total Bremsstrahlung loss power $P_B = 0.9$ GW to the first wall and the total plasma conduction loss $P_L \sim 1.8$ GW to divertor should be converted to the electricity. For the thermal conversion efficiency of 40 %, the electrical power output may be 1.1 GW. Average heat flux to the first wall (Γ_h) is 0.74 MW/m² which is manageable in the present technology and the average neutron wall loading (Γ_n) is 0.04 MW/m², where the blanket could be used for a reactor life time. The divertor heat flux P_{div} to the assumed wetted area with 1 m width of two legs is ~10 MW/m², which is calculated by P_{div} = $P_L/(2\pi R \times 1m \times 2 \text{ legs})$, providing a challenging task especially for the shorter wetted width [6]. The detailed parameters are listed in Table 1. As the ratio of the bremsstrahlung and conduction loss power, which determines the divertor heat flux, depends on the confinement law itself (the power law of the density and the external heating power in the ISS95 scaling), it is difficult to change this ratio by confinement improvement.

The larger machine such as $R/\overline{a} = 16.6 \text{ m/2.9 m}$ can also reach ignition with $\gamma_{LHD} = 3.0$ and $P_{EXT} = 250$ MW, and the slightly larger neutron power of $P_n = 87$ MW is obtained for the fuel ratio of D:³He = 0.52:0.48 at $\langle \beta \rangle \sim 16 \%$. For the

Fig. 1 Temporal evolution of the plasma parameters in the low neutron power mode in the D-³He helical reactor with R = 14.5 m. (a) The peak density n(0), density limit $n(0)_{LMT}$ and peak ion temperature $T_i(0)$, (b) fusion power P_i , fusion power set value P_{n_0} and alpha and proton ash fraction f_{alpha} , (c) the energy confinement time τ_E and the total neutron power P_n , (d) beta value β and density limit factor $n(0)_{LMT}/n(0)$ and (e) the external heating power P_{EXT} and deuterium S_D and helium-3 fueling rate S_{HE3} .

Major radius:	R	14.47 m	16.62	18.46
Effective minor radius:	\overline{a}	2.585 m	2.908	3.232
Toroidal field:	B_o	6.0 T	6.0	6.0
Plasma volume	V_o	1908 m ³	2774	3806
Average plasma surface area	S_o	1476 m ²	1988	2355
Blanket thickness:	Δ_{BT}	0.933 m	1.115	1.297
Rotational transform:	ŧ 2/3	0.92	0.92	0.92
Heating power:	P_{EXT}	200 MW	250 (300)	250 (300)
Confinement factor:	γ_{LHD}	2.4~3.0	2.5~3.0	2.5~3.0
Confinement time:	$ au_{\scriptscriptstyle E}$	4.7 s	5.0	6.3
Ash density fraction:	f_{alpha}	5.1 %	4.4	4.9
Effective ion charge:	Z_{eff}	1.73	1.68	1.68
Fuel ratio:	$n_D:n_{He3}$	0.45:0.55	0.52:0.48	0.52:0.48
Electron density:	<i>n</i> (0)	3.92×10 ²⁰	3.3×10 ²⁰	2.72×10^{20}
Ion temperature:	$T_i(0)$	115	100	107
Toroidal beta value:	$\langle \beta \rangle$	21.1%	15.9	14.0
Fusion power:	P_{f}	3 GW	3	3
Neutron power:	P_n	61 MW	87	86
Bremsstrahlung loss:	P_{B}	906 MW	818	803
Synchrotron radiation loss				
to the wall:	P_{sw}	89.3 MW	94.6	143
for energy conv.:	P_{sH}	99.2 MW	105.1	158
Plasma conduction loss:	P_L	1847 MW	1897	1810
Electric power ($\eta_c = 40 \%$)	P_{e}	~1100 MW	~1000	~1000
Average neutron wall loading	Γ_n	0.04 MW/m ²	0.046	0.036
Average heat flux:	Γ_h	0.74 MW/m ²	0.53	0.47
Divertor heat load	$\Gamma_{\rm c}$	$\sim 10 \text{ MW/m}^2$	9	7.8

Table 1.	Parameters	for LHD type	e D- ³ He Helical	Reactors
----------	------------	--------------	------------------------------	----------

smaller confinement factor of $\gamma_{LHD} = 2.5$, the larger heating power of $P_{EXT} = 300$ MW is required. For somewhat larger machine such as $R/\bar{a} = 18.5$ m/3.2 m, the beta value can be reduced to $\langle \beta \rangle \sim 14$ % for similar performances as listed in Table 1. This is because that the longer confinement time in the larger machine leads to the lower density, and hence lower beta.

We note that the same size of D-T reactor (R = 14.5 m, $\overline{a} = 2.6 \text{ m}, B_o = 6 \text{ T}$) does not require any improvement in confinement (γ_{LHD} = 1.0) for D-T ignition in the case of η_{α} = 1 (no prompt loss of alpha particles) and $\tau_{\alpha}^{*}/\tau_{E} = 3$ (alpha ash confinement time to the energy confinement ratio). The initial heating power is 70 MW, and the final beta is $\langle \beta \rangle \sim$ 2.7 %, which is within the present experimental value. On the other hand, a D-³He helical reactor is demanding in beta, confinement factor and divertor heat flux when LHD type machine is assumed. Therefore, we have further searched for the other type of helical machines suitable for a D-³He fusion such as quasi-poloidal stellarator proposed by Oak Ridge National Laboratory group [4]. In this machine, the high beta of $\langle \beta \rangle = 15 \sim 23 \%$ and long confinement time of $\tau_E \sim 6 \times \tau_{SS95}$ = $3.75 \times (1.6 \times \tau_{ISS95})$ are expected for the aspect ratio of A = 3.7. The large confinement factor compensates the relatively low rotational transform of t = 0.4 at the center. We have calculated the temporal evolution of the plasma parameters in the compact QPS D-³He reactor with R = 10.36 m, $\overline{a} = 2.8$ m, and $B_o = 6$ T as shown in Fig. 2. For $\gamma_{LHD} = 3.7$, the confinement fraction of the 14 MeV proton and 3.7 MeV alpha particle $\eta_p = \eta_\alpha = 97$ % and D:³He = 0.49:0.52, we have obtained the following parameters such as $P_n = 72$ MW, $\Gamma_n = 0.06 \text{ MW/m}^2$, $\Gamma_h = 0.84 \text{ MW/m}^2$, the alpha and proton ash fraction f_{alpha} = 5.0 %, P_L = 1.9 GW, P_B = 0.88 GW, the total synchrotron radiation loss power $P_s = 0.15$ GW, $\tau_E \sim 4.1$ s, $n(0) \sim 4.29 \times 10^{20} \text{ m}^{-3}$, $T_i(0) \sim 111 \text{ keV}$ and $\langle \beta \rangle = 22.7 \%$ in the steady state phase.

4. Summary and issue

To achieve ignition in a D-³He helical reactor with R = 14.5 m to 18.5 m and $B_o = 6$ T, the confinement should be improved up to >2.4 times larger than the present LHD confinement, and $\langle \beta \rangle = 14 \sim 21$ %, the hot ion mode of $T_i/T_e > 1.5$ and the heating power of 200~300 MW are necessary. Neutron power is 60~90 MW. However, divertor heat load is challenging. Larger machine has a lower beta due to the lower

Fig. 2 Temporal evolution of the plasma parameters in the compact QPS D-³He helical reactor with R = 10.36 m.

density and larger confinement time. While these parameter improvements are challenging for LHD type machine, QPS is quite interesting for D-³He fusion.

Acknowledgments

One of authors (O.M.) thanks Prof. S. Okamura for information on QPS.

References

- H. Momota *et al.*, in 7th International Conference on Emerging Nuclear Energy Systems, (Makuhari, Chiba, Japan, 1993) p16.
- [2] O. Mitarai and Y. Tomita, to be submitted in "A D-³He spherical tokamak reactor using efficient use of the vertical field and heating power", (2004).
- [3] U. Stroh et al., Nucl. Fusion 36, 1063 (1996).
- [4] D.A. Spong et al., Nucl. Fusion 41, 711 (2001).
- [5] S. Sudo et al., Nucl. Fusion 30, 11 (1990).
- [6] A. Sagara et al., J. of Nucl. Matt. 313-316, 1 (2003).