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Abstract

A two-dimensional filamentary magnetohydrodynamic (MHD) simulation model, current-vortex method, is
discussed. In the current-vortex method, a point electric current and a point vortex share the same position on the
two-dimensional plane. Time evolution of an MHD system is traced by time evolution of the point electric currents
and the point vortices. A viscous effect due to the collisions between the particles may arise in such particle-based
simulations. We demonstrate that the (instantaneous) viscosity depends on the number of the particles.
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1. Introduction

We have reported a two-dimensional filamentary
magnetohydrodynamic (MHD) simulation model, current-
vortex method [1]. The concept is based on the traditional
vortex method in hydrodynamics. In the current-vortex
method, a point electric current and a point vortex share the
same position on the two-dimensional plane. Spatial profiles
of the electric current and the vorticity are determined by the
sum of such points. Time evolution of an MHD system is
traced by time evolution of the magnetic and velocity fields
determined by the Biot-Savart integrals of the distributions of
the point electric currents and the point vortices. To accelerate
the calculations of the Biot-Savart integral, a special-purpose
computer for molecular dynamics simulations, MDGRAPE-
2, is used [2,3]. The current-vortex method is appropriate for
simulations of systems under the high magnetic Reynolds
number, because the spatial meshes are not necessary in the
current-vortex method. Only the positions of the point electric
currents and the point vortices are kept and traced in the
simulations.

It should be noted that the particles in the particle-based
simulations cause the collisions like ions and electrons. Such
collisions yield the viscosity. We demonstrate the viscosity
due to the collisions depends on the number of the particles
(the point vortices).

In Sec. 2, we describe the basic equations and the
current-vortex method. In Sec. 3, we explain the numerical
viscosity due to the collisions between the point vortices, and

demonstrate the numerical results. In Sec. 4, we give
discussions and conclusions.

2. Filamentary magnetohydrodynamics

We use the two-dimensional ideal MHD equations,
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where B and u are the magnetic field and the velocity on the
x-y plane, Az, jz and ωz are the z components of the magnetic
vector potential, the electric current density and the vorticity,
respectively. The unit vector in z direction is denoted by ẑ.
The mass density is normalized to unity.

We assume that the electric current jz(r, t) and the
vorticity ωz(r, t) have discontinuous distributions,
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where δ (r) is the two-dimensional Dirac delta function.
Notations Ji(t), Ωi(t) are the total electric current and the
circulation inside the i-th current-vortex filament pointed by
the position vector ri(t), respectively. They are confined in
each filament coaxially. Following the above expressions,
magnetic field B(r, t) and velocity field u(r, t) are defined as
follows:
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The function G(r) is the two-dimensional Green function for
the Poisson equation. The right hand sides of eqs. (10) and
(11) are the Biot-Savart integrals in the discretized form.

We rewrite the vorticity equation (1) and the magnetic
induction equation (2) in terms of the filamentary
representations (8)–(11). Details are given in ref. [1]. The
obtained equations are
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Equations (12), (13) and (14) are the equation of motion, the
conservation of circulation and the conservation of total
electric current of the k-th filament, respectively.

3. Viscous effect

In this section, we discuss the viscous effect in particle
simulations. Here we limit ourselves to the pure
hydrodynamic case, i.e., Jk(t) = 0 in eq. (12) for simplicity. In
this limit, the current-vortex method exactly coincides with
the traditional point vortex method.

The point vortex method gives the analytically correct
solution to two-dimensional incompressible Euler equation
[4]. On the other hand, in the limit of infinite number of point
vortices, the discontinuous vorticity field (9) converges to the
continuous one. In this limit, the equations of the point vortex
method converge to the Euler equation for continuous fluids
[5]. However, it appears that using an increased number of
vortices of decreased strength will not yield a converged
solution in numerical simulations [6]. This may be due to the
viscosity that originates with the collisions between the point
vortices, even if there is no explicit viscous diffusion term in
the Euler equation. Such viscosity does not arise in the mesh-
based simulations for the continuous fluids, because there is
no collisional process in the macroscopic fluid scale in the
Euler equation.

In the model, we neglect the viscous parameters, i.e., the

electric resistivity and the kinetic viscosity. Thus, all the
viscous effects in the simulations come from the numerical
ones. The following relation is used to determine the
(instantaneous) numerical viscosity from the total kinetic
energy H and the enstrophy Γ,
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To check the numerical viscous effect, the simulation
results of the diocotron instability in the magnetized pure
electron plasmas are used [7]. It is analytically shown that
the two-dimensional equations of motion of low-density non-
neutral electron plasmas with the guiding-center
approximation coincide with those of the two-dimensional
nonmagnetized fluids, i.e., the Euler equation. Thus, the time
evolution of the pure electron plasmas can be traced by the
point vortex method. In this system, velocity u in energy H is
determined by eq. (11). Enstrophy Γ is determined by
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where ψ(r, t) is stream function for the two-dimensional flow.
Note that the enstrophy is not well defined in the point vortex
system. Thus the enstrophy is determined by the stream
function ψ (r, t) that is well defined even in the point vortex
system. To evaluate the viscosity η numerically, we use eq.
(15) in the following form,
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becasue there are very small fluctuations in H(t) obtained by
the simulation results and it is difficult to evaluate the
instantaneous value of dH(t)/dt exactly.

Initial conditions are as follows. Initial ratio of the inner
to the outer radii of the annular electron distribution is 0.6.
There is no conducting wall around the electrons. We compare
the simulation results where total numbers of the point
vortices are 1.0 × 104, 4.0 × 104, 6.0 × 104 and 8.0 × 104. In
these simulations, the values of the circulation are equal. Time
evolutions of the instantaneous viscosity are plotted in Fig. 1.

In Fig. 1, linear growth stage is T = 30 – 90. In this
period, annular electron layer develops into clumps. After the
linear growth stage, the clumps are merged and the electron
distribution shows broad one. Then, the electrons are
transferred by the near-steady circular flow and there may be
less collisional processes than the initial stage. Thus the
phenomenon in the linear growth stage is more important than
that in the nonlinear stage for us to reveal the mechanism of
the viscosity due to the collisions.

In the linear growth stage, the viscosity in the 1.0 × 104
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particles case is minimum, and the maximum viscosity
corresponds to the 2.0 × 104 particles case. In addition, during
all the simulation time, the 1.0 × 104 particles case shows the
lowest viscosity. Thus we conclude that the viscosity is due
to the collisional process of the point vortices, even if there
is no explicit viscous diffusion term in the Euler equation.
On the other hand, the viscosity due to the collisions should
converge to zero for the continuous fluid, i.e., in the limit of
infinite number of vortices. In the 6.0 × 104 and 8.0 × 104

particles cases, the values of the viscosity is larger than the
1.0 × 104 particles case, but smaller than the 2.0 × 104

particles case. Thus it is likely that the viscosity increases as
the number of vortices n increases upto a cirtain critical value,
say n0, and decreases for larger n (> n0). The value of n may
be between 1.0 × 104 and 6.0 × 104. Note that the viscosity
does not yet converge to zero in the simulation results. It is
very difficult to demonstrate the zero-viscosity result by the
simulation.

Fig. 1 Time evolutions of the instantaneous viscosity are
plotted.

4. Discussion and conclusion

We have presented the simulation model where the
electric current and the vorticity are discretized in the same
manner as the traditional vortex method in hydrodynamics.
Time evolution of an MHD system is traced by time evolution
of the magnetic and velocity fields determined by the Biot-
Savart integrals of the distributions of the point electric
currents and the point vortices. To accelerate the calculations
of the integral, MDGRAPE-2 has been used. The model is
suitable for the simulations of the high magnetic Reynolds
number.

We have demonstrated that the viscosity depends on the
number of vortices. It seems likely that the value approaches
to zero at infinite number of point vortices, though it is not
yet demonstrated by the simulations. It is nessesary to
determine the critical value of the number of vortices where
the viscosity due to the collisional effect becomes maximum.
We are now analytically evaluating the viscosity on the
current-vortex method.
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