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Abstract

In this paper, we study the interaction between trapped electrons and magnetic field gradient and curvature
(MFGC) –driven drift waves. In addition to the MFGC instabilities of long wavelength, a new unstable branch of
short wavelength is excited after the trapped electrons are included. It is found that there exist heat pinches in the
long wavelength regime. Especially in the position of parallel wave number k// ≈ 0, the electron-wave resonance
strongly destabilizes the modes with the short wavelength, which contribute the significant positive value to ion and
electron thermal diffusivities (χi and χe) but the significant negative value to particle diffusivity (De). Finally, a set of
nonlinear equations for the MFGC mode with the trapped electron effects is derived and qualitative discussions on it
are made.
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1. Introduction

It has been realized that the turbulence in plasma is a
multiple-length-scale structure [1]. In addition to the long
wavelength turbulence, it has been an interesting subject to
explore the short wavelength one [2]. Recently, it becomes
especially attractive to study the interaction between the
different length scale structures [1,3]. Thus, it is desired to
obtain a turbulence structure from zero to infinity wave
number.

In the previous work [4], we have presented a new kind
of instability in the toroidal plasmas: magnetic filed gradient
and curvature (MFGC)-driven one. The MGFC instability is
the long wavelength dominant one. It possesses the finite
growth rate even if the plasma pressure gradient vanishes. In
addition, no matter what magnitude the plasma pressure
gradient is, the instability can be stabilized as long as the
magnetic field gradient and curvature is zero.

In this work, we study the interaction between MFGC
modes and trapped electrons. In addition to the MFGC
instability of long wavelength, a new unstable branch of short
wavelength is excited after the trapped electrons are included.
Thus, there exist the multi-mode interactions, e.g., those
between the two unstable branches and between the stable
and unstable branches. As a result, they lead to the present
hybrid instabilities with the wave number spectrum of growth

rate from zero to infinity. Subsequently, the effects of the
electron-wave resonance on the instabilities and associated
transport are emphasized. Finally, a set of nonlinear equations
is derived and qualitative analyses on the predicted nonlinear
processes are made, which indicate that the nonlinear
processes would lead to the minimum energy states satisfying
k// ≈ 0 with the minimum safety factor and turbulent transport
level.

2. Linear instability and associated

transport

To study the effects of trapped electrons on the MFGC
modes, we use two-fluid description in the sheared coordinate
system ê⊥ = b̂ × r̂ [5], where r̂ is radial unit vector and b̂ =
B/B is the unit vector along magnetic field B. Then, the
electron response is taken as

n n e T i e Te e e et e= + +0 1[ / / ],φ δ φ (1a)

where Te and ne are the temperature and density of electrons,
respectively, –e is electron charge, and φ is electrostatic
potential. For the collisionless electron-wave resonance [6]

δ δ ρ ηet i ek b= −⊥0 2[ / ], (1b)

where δ0 = (πme/2mi)1/2/k//Ln, ρ = (Temi)1/2/eB, bi = (k⊥
2 +
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kr
2)ρ2, and ηe = Ln/LTe. Similarly, we have ηi = Ln/LTi. Here

mi and me are ion and electron mass, and k⊥ and kr are the
perpendicular and radial wave number, respectively; Ln =
–ne(∂ne/∂r)–1, LTj = –Tj(∂Tj/∂r)–1, and the subscript j = i, e
denotes ion and electron species, respectively. Then, following
the previous route [4], we obtain the dispersion equation,

[ ( )( )]* *b ii et J p p D i D ei e i e
Ω − + − + + = ,1 δ ω ω ω ω ω∆ ∆ (2a)
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where, τ = Ti/Te, Ω = (ω – k·Vi), Vi is the equilibrium fluid
velocity of ions; ωJ = (ene)–1k·J = bJ(ω*pe – ω *pi) [5], J is the
current density, and bJ = (qε–1k// /k⊥) – 1 with the safety factor
q and ε = r/R << 1 (r and R are the minor and major radius of
plasma, respectively); ωDj = –2k⊥Tj/eBR and ω*pj = (1 + ηj)ω*j.
Here Eq. (2a) is obtained by subtracting the continuity
equation of electrons from that of ions with the quasi-
neutrality condition and Eqs. (2b) and (2c) come from the
energy equation of ions and electrons, respectively.

In order to understand the instability described by
Eq. (2), it is necessary to discuss Eq. (2) in the two specific
cases. First, if the plasma pressure gradient vanishes, i.e.,
LTi

–1, LTe
–1, and Ln

–1 all are zero, Eq. (2) reduces to [4]
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where Ω is normalized to ωDe. Eq. (3) has generally the
unstable solutions. The instabilities are driven completely by
the magnetic field gradient and curvature. The MFGC
instabilities are the long wavelength-dominated ones due to
the finite Larmor radius effect 1/bi. The previous fluid models
[7] for toroidal ion temperature gradient / trapped electron
modes (ITG/TEMs) have no unstable MFGC solutions in the
electrostatic case when the plasma pressure gradient vanishes,
even if the bad curvature enhances the ITG/TEM instabilities.
Compared with those model equations, the present include
both the equilibrium fluid velocity of ions and electrons and
the continuity and energy equation of electrons. Furthermore,
if the magnetic field gradient and curvature is zero, i.e., ωDi

= ωDe = 0, from Eq. (2) we have the following unstable
solution for Ω :

b ii et J p pe i
Ω = + + −( )( ).* *1 δ ω ω ω (4)

The instabilities originate in the coupling between the trapped
electron effects δet and the plasma total pressure gradient
LP

–1 = –P–1dP/dr ∝ (ωJ + ω *pe – ω *pi), which are similar to

the trapped electron-ion temperature gradient modes [7] from
the viewpoint of drive sources. Considering Eq. (1b), along
with ωJ = (ene)–1k·J = bJ(ω *pe – ω *pi), we find the growth
rate of unstable modes, described by Eq. (4), are direct
proportional to the safety factor q, i.e.,

γ ε δ η ρ ω ω= − −−q b ke i p pe i

1
0 1 2( / ) ( ) ./ / * * (5)

Obviously, the instability is the short wavelength dominant
one: the larger the wave number, the larger the growth rate.
For the short wavelength limit ηe/2bi in Eq. (5) can be
omitted.

In the general case with both the finite plasma pressure
gradient and the magnetic field gradient and curvature, there
exist the interaction between the two unstable branches (3)
and (4) and the coupling of the stable branches with the
unstable branches. As a result, they lead to the present hybrid
instabilities with the wave number spectrum of growth rate
from zero to infinity. In particular, the electron-wave
resonance in the position of k// ≈ 0 strongly enhances the
growth rate, as shown in Figs. 1 and 2, where k//ρ = 10–7. The
first unstable branch (solid line) in Fig. 1 is dominated by
Eq. (3) and becomes stable in the short-wave length regime.
The second unstable branch (dashed line) in Fig. 1 is mainly
determined by Eq. (5) and stable in the long wave length
regime. Here it should be pointed out that the fluid description
and qausineutrality used here are valid for the first branch
but only give a qualitative physical picture for the second
branch.

Now, we turn our attention to the ion and electron heat

Fig. 1 Growth rate and real frequency for two unstable
solutions of Eq. (2a) versus k⊥ρ (from zero to 4). Solid
line is unstable in the regime k⊥ρ < 2.2; dashed line is
unstable in the regime k⊥ρ > 2.2 (see, Fig. 2). R/Ln = 15,
R/LTi = 100, R/LTe = 150, τ = 1.5, q = 1.5, R/ρ = 1500, and
krρ = 0.4.
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and particle transport caused by the hybrid instability. From
the definitions of the turbulent fluxes for ion and electron heat
and particles, [8]

q vT i Er i ii
Re T r T r r= = − ∂ ∂δ δ χ* ˆ ( ) / , (6)

q vT e Er e ee
Re T r T r r= = − ∂ ∂δ δ χ* ˆ ( ) / , (7)

q vn e Er e ee
Re n rD n r r= = − ∂ ∂δ δ * ˆ ( ) / , (8)

along with the assumption for saturated turbulence

˜ / ,φ γ ω= 2 D re
k R (9)
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etr= −2 2γ δ ˆ,qne
(12)

where δvEr is the radial fluctuation of E × B velocity, and
< > refers to a time average. Here both qTi and qTe are
normalized to TiRωDe /kr

2R2, qne to neRωDe /kr
2R2, the

frequencies to ωDe, and Ln, LTi, and LTe to R. Correspondingly,
the ion and electron heat and particle transport coefficients,
normalized to ωDe/kr

2, are, respectively,

χ i T Ti i
rL= ⋅q ˆ , (13)

χ τe T Te e
r L= ⋅q ˆ , (14)

D rLe n ne
= ⋅q ˆ , (15)

where qTi, qTe, and qne are given by Eqs. (10), (11), and (12),
respectively. Here note that, both qTi and qTe are finite when
the plasma pressure gradient vanishes. In the case, the growth
rate of instability is given by Eq. (3) and correspondingly, χi

and χe tend to infinite. Furthermore, the transport coefficients
χi, χe, and De under the general case with the both finite
plasma pressure gradient and the magnetic field gradient and
curvature, are shown in Figs. 3 and 4. The present χi, χe, and
De in the short wavelength regime (bi >> ηe/2) have the
opposite sign with those in the long wavelength regime (bi ≤
ηe/2). Especially, the electron-wave resonance-excited short
wavelength instabilities contribute the significant positive
values to χi and χe but the significant negative value to De

(particle pinch).
In deriving the above transport coefficients, we used the

assumption (9). However, the saturated value for a
perturbation, e.g., φ̃, should be decided by the corresponding
nonlinear processes. In the following, we give the nonlinear
equations with the interaction between MFGC mode and
trapped electrons.

Fig. 2 Growth rate (solid line) and real frequency (dashed line)
for unstable short-wave length branch of Eq. (2a)
versus k⊥ρ (from 400 to 500). All other parameters are
the same as Fig. 1.

Fig. 3 χi (solid line), χe (dashed line), and De (dotted line)
induced by the instabilities in Fig. 1. Here χi , χe, and De

are normalized to 106 × ωDe/kr
2.

Fig. 4 χi (solid line), χe (dashed line), and De (dotted line)
induced by the instabilities in Fig. 2. Here χi , χe , and De

are normalized to 1016 × ωDe/kr
2.
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3. Nonlinear modes

In what follows, we use x̂, ŷ, and ẑ coordinate system,
where x̂ , ŷ , and ẑ  are counterparts of r̂ , ê⊥, and b̂ in the
sheared coordinate system, respectively. Then, we can derive
the following set of nonlinear equations
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where the spatial length scale is normalized to ρ, and velocity
to cs = (Te/mi)1/2; φ̃, p̃i, and p̃e are the normalized fluctuations
for the electrostatic potential and ion and electron pressure,
i.e., φ̃ = eδφ /Te, p̃e = δpe/Pe, and p̃i = δpi/Pi; [φ̃, f ] = δvE ·∇f
is the Poisson brackets, and the subscript k expresses the
Fourier component of the fluctuation with wave number k.
Eqs. (16)-(18) describe the nonlinear processes with
interaction between the MFGC modes and trapped electrons,
which are retained for the future numerical research. But,
qualitative discussion on them is also useful. As we argued
previously, the present linear instabilities have the significant
growth rates (or energy) in the short wavelength regime,
which are direct proportional to the safety factor q (or q2)
and driven by the electron-wave resonance in the position of
k// ≈ 0. Based on the minimum energy principle, we can
primarily judge that the nonlinear processes, described by
Eqs. (16)-(18), should transfer the energy of the short
wavelength modes to the long wavelength modes and
meanwhile relax the safety factor q to its minimum (even if
the present electrostatic description can not influence q).
Consequently, it is possible that φ̃ in the short wavelength
regime is almost in the same order of magnitude as that in
the long wavelength regime and thus, the turbulent transports,
induced by the different length scale turbulence,
approximately cancel each other because the present χi, χe,
and De in the short wavelength regime have the opposite sign
with those in the long wavelength regime. That is, the wave-
wave couplings of nonlinear processes with the electron-wave
resonance in the position of k// ≈ 0 would lead to the minimum
energy states satisfying k// ≈ 0 with the minimum safety factor
and turbulent transport level. Such minimum energy states
may be candidates to explain the experimental facts that the

transport barriers have been often observed at or near the
minimum rational surface.

4. Summary

In this work, we studied the interaction of MFGC modes
with trapped electrons. The MFGC instabilities are the long
wavelength dominant ones. After the trapped electrons are
included, however, a new unstable branch of short wavelength
is excited, the growth rate of which is direct proportional to
the safety factor q. In the case, there exist multi-mode-
interactions, e.g., that between the long and short wavelength
unstable branches. As a result, they lead to the present hybrid
instabilities with the wave number spectrum of growth rate
from zero to infinity. It is found that both χi and χe is negative
(heat pinches) while De are positive in the long wavelength
regime k⊥

2ρ 2 ≤ ηe/2, and inversely, De is negative (particle
pinch) but χi and χe are positive in the short wavelength
regime k⊥

2ρ 2 >> ηe /2. In particular, the electron-wave
resonance in the position of k// ≈ 0 strongly destabilizes the
modes in the regime k⊥

2ρ 2 >> ηe/2, which contribute the
significant positive values to χi and χe but significant negative
value to De.

Finally, we derived a set of nonlinear equations with
interaction of MFGC modes with trapped electrons. A
qualitative discussion on the corresponding nonlinear
processes was made from the linear results and minimum
energy principle.
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